Israel Journal of Mathematics

, Volume 49, Issue 1–3, pp 181–238 | Cite as

A survey of basic stability theory, with particular emphasis on orthogonality and regular types

  • M. Makkai


A selfcontained exposition is given of a part of stability theory in model theory, the part that deals with the concepts of orthogonality, weight and regularity. The necessary background from earlier parts of stability theory is explained but proofs in this part are given in outline only or not at all.


Stability Theory Ideal Type Saturated Model Superstable Theory Ideal Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    J. Baldwin, book on Stability Theory.Google Scholar
  2. [C-K]
    C. C. Chang and H. J. Keisler,Model Theory, North Holland, 1973.Google Scholar
  3. [H-H]
    V. Harnik and L. Harrington,Fundamentals of forking, to appear.Google Scholar
  4. [H-M]
    L. Harrington and M. Makkai,An exposition of Shelah’s “Main Gap”; counting uncountable models of ω-stable and superstable theories, Notre Dame J. Formal Logic, to appear.Google Scholar
  5. [L]
    D. Lascar,Ordre de Rudin Keisler et poids dans les théories stables, Z. Math. Logik Grundlag. Math.28 (1982), 413–430.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [L-P]
    D. Lascar and B. Poizat,An introduction to forking, J. Symb. Logic44 (1979), 330–350. 611, Springer-Verlag, Berlin, 1977zbMATHCrossRefMathSciNetGoogle Scholar
  7. [M-R]
    M. Makkai and G. E. Reyes,First order categorical logic, Lecture Notes in Math., No 611, Springer-Verlag, Berlin, 1977.zbMATHGoogle Scholar
  8. [Sh]
    S. Shelah,Classification Theory and the Number of Non-isomorphic Models, North-Holland, 1978.Google Scholar
  9. [Sh-H-M]
    S. Shelah, L. Harrington and M. Makkai,A proof of Vaught’s conjecture for ω-stable theories, Isr. J. Math.49 (1984), 259–280 (this issue).zbMATHMathSciNetGoogle Scholar
  10. [1]
    E. Bouscaren and D. Lascar,Countable models of non-multidimensional 0-stable theories, J. Symb. Logic48 (1983), 197–205.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [2]
    D. Lascar,Rank and definability in superstable theories, Isr. J. Math.23 (1976), 53–87.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [2′]
    D. Lascar,Généralisation de l’ordre de Rudin-Keisler aux types d’une théorie, Colloques internationaux du C.N.R.S., No. 240, Clermont-Ferrand, 1975, pp. 73–81.Google Scholar
  13. [3]
    G. Sacks,Saturated Model Theory, W. A. Benjamin Inc., 1972.Google Scholar
  14. [4]
    J. Saffe,An introduction to regular types, unpublished manuscript.Google Scholar
  15. [5]
    S. Shelah,Uniqueness and characterization of prime models over sets for totally transcendental first order theories, J. Symb. Logic37 (1972), 107–113.zbMATHCrossRefGoogle Scholar
  16. [6]
    S. Shelah,Remark to “Local definability theory” of Reyes, Ann. Math. Logic2 (1971), 441–447.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [7]
    S. Shelah,On uniqueness of prime models, J. Symb. Logic44 (1979), 319–324.zbMATHCrossRefGoogle Scholar
  18. [8]
    S. Shelah,The spectrum problem I:1-saturated models, the Main Gap, Isr. J. Math.43 (1982), 324–356.zbMATHGoogle Scholar
  19. [9]
    S. Shelah,The spectrum problem II: The infinite depth case, Isr. J. Math.43 (1982), 357–364.zbMATHGoogle Scholar
  20. [10]
    S. Shelah,Classification theory for non-elementary classes I: The number of uncountable models of ψ ∈ L ω/ω. Part A, Isr. J. Math.46 (1983), 212–240;Part B, Isr. J. Math.46 (1983), 241–273.zbMATHGoogle Scholar
  21. [11]
    S. Shelah, handwritten notes on the Vaught conjecture forω-stable and superstable theories.Google Scholar
  22. [M]
    M. Morley,Categoricity in power, Trans. Am. Math. Soc.114 (1965), 514–538.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [P]
    A. Pillay, book on Stability Theory.Google Scholar

Copyright information

© Hebrew University 1984

Authors and Affiliations

  • M. Makkai
    • 1
  1. 1.Institute for Advanced StudiesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations