Israel Journal of Mathematics

, Volume 2, Issue 2, pp 91–100 | Cite as

Addition and decomposition of convex polytopes

  • William J. Firey
  • Branko Grünbaum


A new addition of convex polytopes is defined and the possibility of representing each polytope as a sum of “standard” polytopes is established


Convex Hull Convex Body Convex Polyhedron Convex Polytopes Vector Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Aleksandrov,On the theory of mixed volumes of convex bodies, Mat. Sb.,2 (1937) 947–972, 1205–1238;3 (1938), 27–46, 227–251 (Russian).Google Scholar
  2. 2.
    A. D. Aleksandrov,Convex polyhedra, Moscow, 1950, (Russian; German translation under title:Konvexe Polyeder, Berlin, 1958).Google Scholar
  3. 3.
    W. Blaschke,Kreis und Kugel, 1st ed., Leipzig, 1916.Google Scholar
  4. 4.
    T. Bonnesen and W. Fenchel,Theorie der konvexen Körper, Berlin, 1934.Google Scholar
  5. 5.
    H. Buseman,Convex surfaces, New York, 1958.Google Scholar
  6. 6.
    L. Danzer, B. Grünbaum and V. Klee,Helly’s theorem and its relatives, Proc. Symp. Pure Math., VII (1963), 101–180.Google Scholar
  7. 7.
    W. Fenchel and B. Jessen,Mengenfunktionen und konvexe Körper, Danske Videnskabernes Selskab. Math-fys. Meddelelser, XVI, No. 3. (1938).Google Scholar
  8. 8.
    D. Gale,Irreducible convex sets, Proc. Internat. Congress Math., vol. 2, 217–218, Amsterdam, 1954.Google Scholar
  9. 9.
    B. Grünbaum,Measures of symmetry for convex sets, Proc. Symp. Pure Math., VII (1963), 233–270.Google Scholar
  10. 10.
    H. Minkowski,Allgemeine Lehrsätze über konvexe Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198–219. (Ges. Abh., vol. 2, 103–121, Leipzig and Berlin, 1911).Google Scholar
  11. 11.
    H. Minkowski,Volumen und Oberfläche, Math. Ann.,57 (1903), 447–495 (Ges. Abh., vol.2, 230–276, Leipzig and Berlin, 1911).CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    G. C. Shephard,Decomposable convex polyhedra, Mathematika,10 (1963), 89–95.MathSciNetzbMATHGoogle Scholar
  13. 13.
    G. C. Shephard,Approximation problems for convex polyhedra, Mathematika,11 (1964), 9–18.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    I. M. Yaglom and V. G. Boltyanskii,Convex figures, Moscow and Leningrad, 1951. (Russian; German translation 1956; English translation 1961).Google Scholar

Copyright information

© Hebrew University 1964

Authors and Affiliations

  • William J. Firey
    • 1
  • Branko Grünbaum
    • 2
  1. 1.Oregon State UniversityCorvallisU.S.A.
  2. 2.The Hebrew University of JerusalemIsrael

Personalised recommendations