Israel Journal of Mathematics

, Volume 1, Issue 2, pp 105–107 | Cite as

A proof of dilworth’s decomposition theorem for partially ordered sets

  • Micha A. Perles
Article

Abstract

A short proof of the following theorem is given: LetP be a finite partially ordered set. If the maximal number of elements in an independent subset ofP isk, thenP is the union ofk chains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    de Bruijn N. G. and Erdös P. 1951, A colour problem for infinite graphs and, a problem in the theory of relations,Nederl. Akad. Wetensch. Proc. ser. A,54, 371–373.Google Scholar
  2. 2.
    Dantzig G. B. and Hoffman, A. J., 1956, Dilworth’s theorem on partially orders sets, Linear inequalities and related systems,Annals of Mathematics Studies No. 38, Princeton University Press, pp. 207–214.Google Scholar
  3. 3.
    Dilworth, R. P., 1950, A decomposition theorem for partially ordered sets,Ann. of Math. 51, 161–166.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fulkerson, D. R., 1956, Note on Dilworth’s decomposition theorem for partially ordered sets,Proc. Amer. Math. Soc.,7, 701–702.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gallai, T. and Milgram, A. N., 1960, Verallgemeinerung eines graphentheoretisch-Satzes von Rédei,Acta Sci. Math. (Szeged),21, 181–186.MATHMathSciNetGoogle Scholar
  6. 6.
    Gottschalk, W. H., 1951, Choice functions and Tychonoff’s theorem,Proc. Amer. Math. Soc.,2, 172.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Halmos, P. R., and Vaughan, H. E., 1950, The marriage problem,Amer. J. Math.,72, 214–215.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    König, D., 1950,Theorie der endlichen und unendlichen Graphen, Chelsea Publishing Co., New York.MATHGoogle Scholar
  9. 9.
    Rado, R., 1949, Axiomatic treatment of rank in infinite sets,Canad. J. Math.,1, 337–343.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1963

Authors and Affiliations

  • Micha A. Perles
    • 1
  1. 1.The Hebrew University of JerusalemIsrael

Personalised recommendations