Israel Journal of Mathematics

, Volume 28, Issue 1–2, pp 1–31 | Cite as

On the singular cardinals problem I

  • Menachem Magidor


We show how to get a model of set theory in which ℵω is a strong limit cardinal which violates the generalized continuum hypothesis. Generalizations to other cardinals are also given.


Direct Extension Ground Model Regular Cardinal Measurable Cardinal Preserve Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bukovsky,The continuum problem and the powers of alephs. Comment. Math. Univ. Carolinae6 (1965), 181–197.zbMATHMathSciNetGoogle Scholar
  2. 2.
    P. J. Cohen,The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A.50 (1963), 1143–1148;51 (1964), 105–110.CrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Devlin and R. Jensen,Marginalia to a Theorem of Silver, to appear.Google Scholar
  4. 4.
    W. B. Easton,Powers of regular cardinals, Ann. Math. Logic1 (1970), 139–178.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    F. Galvin and A. Hajnal,Inequalities for cardinal powers, Ann. of Math.101 (1971), 491–498.CrossRefMathSciNetGoogle Scholar
  6. 6.
    T. J. Jech,Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Lecture Notes in Mathematics No. 217, Berlin, 1971, 137 pp.Google Scholar
  7. 7.
    T. J. Jech,Properties of the gimel function and classification of singular cardinals, Fund. Math.81 (1974), 57–64.MathSciNetGoogle Scholar
  8. 8.
    H. J. Keisler and A. Tarski,From accessible to inaccessible cardinals, Fund. Math.53 (1964), 225–308; corrections57 (1965), 119.MathSciNetGoogle Scholar
  9. 9.
    A. Levy and R. M. Solovay,Measurable cardinals and the continuum hypothesis, Israel J. Math.5 (1967), 234–248.zbMATHMathSciNetGoogle Scholar
  10. 10.
    J. Łos,Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres in Mathematical Interpretations of Formal Systems, Amsterdam, 1955, 98–113.Google Scholar
  11. 11.
    M. Magidor,There are many normal ultrafilters corresponding to a supercompact cardinal, Israel J. Math.9 (1971), 186–192.zbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Magidor,Changing cofinality of cardinals, to appear in Fund. Math.Google Scholar
  13. 13.
    M. Magidor,On the singular cardinals problem II, in preparation.Google Scholar
  14. 14.
    T. K. Menas,On Strong Compactness and Supercompactness, Ph.D. Thesis, Berkeley, 1973.Google Scholar
  15. 15.
    T. K. Menas,A partition property of P κλ, to appear.Google Scholar
  16. 16.
    K. Prikry,Changing measurable into accessible cardinals, Dissertationes Math.68 (1970), 5–52.MathSciNetGoogle Scholar
  17. 17.
    A. Kanamori, W. N. Reinhardt and R. M. Solovay,Strong axioms of infinity and elementary embeddings, to appear in Ann. Math. Logic.Google Scholar
  18. 18.
    F. Rowbottom,Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic3 (1971), 1–44.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Scott,Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci.9 (1961), 521–524.zbMATHGoogle Scholar
  20. 20.
    J. R. Shoenfield,Unramified forcing in “Axiomatic Set Theory”, in Proceedings of Symposia in Pure Math., Vol. 13 (D. Scott, ed.), Providence, R.I., 1971, 351–382.Google Scholar
  21. 21.
    J. Silver,G.C.H. and large cardinals, to appear.Google Scholar
  22. 22.
    J. Silver,On the singular cardinals problem, to appear in Proceedings of the International Congress of Mathematics, Vancouver, 1974.Google Scholar
  23. 23.
    R. M. Solovay,A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math.92 (1970), 1–56.CrossRefMathSciNetGoogle Scholar
  24. 24.
    R. M. Solovay,Strongly compact cardinals and the G.C.H., Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, Volume XXV, Providence, 1974, 365–372.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1977

Authors and Affiliations

  • Menachem Magidor
    • 1
  1. 1.Department of MathematicsBen Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations