Advertisement

Molecular Biology

, Volume 34, Issue 3, pp 395–402 | Cite as

Molecular design based on polyribonucleotides fixed in the structure of liquid-crystalline dispersion and cross-linked via polymeric chelate bridges

  • V. I. Salyanov
  • E. I. Kats
  • Yu. M. Yevdokimov
Biopolymer Physics and Physical Chemistry

Abstract

A method of molecular design based on cross-linking of polyribonucleotide molecules with polymeric chelate bridges (anthracycline-Cu2+-…-Cu2+-anthracycline) was developed. The formation of polymeric chelate cross-bridges between neighboring polyribonucleotide molecules in the particles of liquid-crystalline dispersions was shown to require the formation of external complex (anthracycline-polyribonucleotide). The properties (shape, size, optical activity, etc.) of molecular constructions composed of different polyribonucleotides were studied and compared. Molecular constructions on the basis of polyribonucleotides could be used as sensing elements with adjustable properties in biosensor technology, nanobiotechnology, and molecular pharmacology.

Key words

polyribonucleotides liquid-crystalline dispersions circular dichroism spectra chelate complexes polymeric chelate bridges molecular constructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Service, R.F.,Science, 1997, vol. 277, pp. 1036–1037.PubMedCrossRefGoogle Scholar
  2. 2.
    Seeman, N.C.,Acc. Chem. Res., 1997, vol. 30, pp. 357–363.CrossRefGoogle Scholar
  3. 3.
    Yevdokimov, Yu.M., Salyanov, V.I., and Skuridin, S.G.,Dokl. Akad. Nauk, 1994, vol. 338, pp. 827–829.Google Scholar
  4. 4.
    Bethell, D. and Schiffrin, D.J.,Nature, 1996, vol. 382, pp. 581–582.PubMedCrossRefGoogle Scholar
  5. 5.
    Seeman, N.C.,Acc. Chem. Res., 1997, vol. 30, pp. 357–363.CrossRefGoogle Scholar
  6. 6.
    Yevdokimov, Yu.M., Salyanov, V.I., Mchedlishvili, B.V., Bykov, V.A., Spener, F., and Palumbo, M.,Sensornye Sistemy, 1999, vol. 13, pp. 82–91.Google Scholar
  7. 7.
    Yevdokimov, Yu.M., Skuridin, S.G., and Lortkipanidze, G.B.,Liq. Cryst., 1992, vol. 12, pp. 1–16.CrossRefGoogle Scholar
  8. 8.
    Pyatigorskaya, T.L., Yevdokimov, Yu.M., and Varshavskii, Ya.M.,Mol. Biol., 1978, vol. 12, pp. 404–411.Google Scholar
  9. 9.
    Lortkipanidze, G.B., Yevdokimov, Yu.M., Dembo, A.T., and Varshavskii, Ya.M.,Mol. Biol., 1984, vol. 18, pp. 466–473.Google Scholar
  10. 10.
    Belyakov, V.A., Orlov, V.P., Semenov, S.V., Skuridin, S.G., and Yevdokimov, Yu.M.,Liq. Cryst., 1996, vol. 20, pp. 777–784.CrossRefGoogle Scholar
  11. 11.
    Greenaway, F.T. and Dabrowiak, J.C.,J. Inorg. Biochem., 1982, vol. 16, pp. 91–107.CrossRefGoogle Scholar
  12. 12.
    Barthelemy-Clavey, V., Maurizot, J.-C., and Sicard, P.,Biochimie, 1973, vol. 55, pp. 859–868.PubMedCrossRefGoogle Scholar
  13. 13.
    Doskocil, J. and Fric, I.,FEBS Lett., 1973, vol. 37, pp. 55–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Plumberg, T.W. and Brown, J.R.,Biochim. Biophys. Acta, 1977, vol. 479, pp. 441–449.Google Scholar
  15. 15.
    Plumberg, T.W. and Brown, J.R.,Biochim. Biophys. Acta, 1979, vol. 563, pp. 181–192.Google Scholar
  16. 16.
    Malatesta, V., Gervasini, A., and Morazzoni, F.,Inorg. Chim. Acta, 1987, vol. 136, pp. 81–85.CrossRefGoogle Scholar
  17. 17.
    Yevdokimov, Yu.M., Salyanov, V.I., Lortkipanidze, G.B., Gedig, E., Spener, F., and Palumbo, M.,Biosens. Bioelectron., 1998, vol. 13, pp. 279–291.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interpeniodica” 2000

Authors and Affiliations

  • V. I. Salyanov
    • 1
  • E. I. Kats
    • 2
  • Yu. M. Yevdokimov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations