Russian Journal of Bioorganic Chemistry

, Volume 26, Issue 5, pp 297–305 | Cite as

Computer prediction of biological activity spectra for low-molecular peptides and peptidomimetics

  • N. B. Martynova
  • D. A. Filimonov
  • V. V. Poroikov
Article

Abstract

The wide variety of the biological effects of peptides and their high activity are the main reasons for the search for new basic drug structures among them. The most promising compounds can be selected using the PASS computer system (Prediction of Activity Spectra for Substances). This system was originally developed to predict the activities of low-molecular “drug-like” organic compounds. Its predictive capacity is described here by the example of 134 peptides and peptidomimetics with nine known biological activities. Its average predictive power is shown to be approximately 97%. Such an accuracy demonstrates that computer prediction can be applied both to the evaluation of effects and mechanisms of action of endogenous and synthetic peptides and to the screening of new therapeutic agents among the most promising basic structures.

Key words

peptides peptidomimetics biological activity computer prediction search for basic structures of new therapeutics 

Abbreviations

ACTH

adrenocorticotropic hormone

CNS

central nervous system

PASS

Prediction of Activity Spectra for Substances

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashmarin, I.P.,Evol. Biokhim. Fiziol., 1982, vol. 18, pp. 3–10.Google Scholar
  2. 2.
    Gomazkov, O.A.,Fiziologicheski aktivnye peptidy (Physiologically Active Peptides), Moscow: IPGM, 1995.Google Scholar
  3. 3.
    Ponomareva-Stepnaya, M.A., Nezavibat’ko, V.N., Antonova, L.V., Alfeeva, L.Yu., Potaman, V.N., Kamenskii, A.A., and Ashmarin, I.P.,Khim.-Farm. Zh., 1984, vol. 7, p. 790.Google Scholar
  4. 4.
    Vinogradov, V.V., Spevak, S.E., Yarygin, K.N., Korobov, N.V., Solov’eva, A.I., Shekhter, A.B, and Titov, M.I.,Byull. Ekspt. Biol. Med., 1987, vol. 104, pp. 89–91.Google Scholar
  5. 5.
    Ivanov, V.T.,Vopr. Med. Khim., 1984, vol. 30, pp. 23–31.PubMedGoogle Scholar
  6. 6.
    Hobbs De Witt,Combinatorial Libraries and High-Throughput Synthesis in the Practice of Medicinal Chemistry, London: Academic, 1996, pp. 117–134.Google Scholar
  7. 7.
    Owens, R.A., Gesellchen, P.D., Houchins, B.J., and Diarchi, R.D.,Biochem. Biophys. Res. Commun., 1991, vol. 181, pp. 402–408.PubMedCrossRefGoogle Scholar
  8. 8.
    Norinder, U.,Computer-Aided Drug Design Industrial Research, Herrmann, E.C. and Franke, R., Eds., Berlin: Springer, 1995, pp. 99–109.Google Scholar
  9. 9.
    Gloriozova, T.A., Filimonov, D.A., Lagunin, A.A., and Poroikov, V.V.,Khim.-Farm. Zh., 1998, vol. 32, pp. 32–39.Google Scholar
  10. 10.
    Poroikov, V.V., Filimonov, D.A., Stepanchikova, A.V., Budunova, A.P., Shilova, E.V., Rudnitskikh, A.V., Selezneva, T.M., and Goncharenko, L.V.,Khim.-Farm. Zh., 1996, vol. 30, pp. 20–23.Google Scholar
  11. 11.
    Filimonov, D.A., Poroikov, V.V., Karaicheva, E.I., Kazaryan, R.K., Budunova, A.P., Mikhailovskii, E.M., Rudnitskikh, A.V., Goncharenko, L.V., and Burov, Yu.V.,Eksp. Klin. Farmakol., 1995, vol. 58, pp. 56–62.PubMedGoogle Scholar
  12. 12.
    Silverman, R.B., Hui Huang, Marletta, M.A., and Martasek, P.,J. Med. Chem., 1997, vol. 40, pp. 2813–2817.PubMedCrossRefGoogle Scholar
  13. 13.
    Sebti, S.M., Qian, Y., Vogt, A., and Hamilton, A.D.,J. Med. Chem., 1996, vol. 39, pp. 217–223.PubMedCrossRefGoogle Scholar
  14. 14.
    Robl, J.A., Cimarusti, M.P., Simpkins, L.M., Brown, B., Ryono, D.E., Bird, J.E., Asaad, M.M., Schaeffer, T.R., and Trippodo, N.C.,J. Med. Chem., 1996, vol. 39, pp. 494–502.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugg, E.E., Aquino, C.J., Armour, D.R., Berman, J.M., Birkemo, L.S., Carr, R.A.E., Croom, D.K., Dezube, M., Dougherty, R.W., Jr., Ervin, G.N., Grizzle, M.K., Heard, J.E., Hirst, G.C., James, M.K., Johnson, M.F., Miller, L.J., Queen, K.L., Rimele, T.J., and Smith, T.H.,J. Med. Chem., 1996, vol. 39, pp. 562–569.PubMedCrossRefGoogle Scholar
  16. 16.
    Geldern, T.W., Hoffman, D.J., Kester, J.A., Nellans, H.N., Dayton, B.D., Calzadilla, S.V., Marsh, K.C., Hernandez, L., Chiou, W., Dixon, D.B., Wu-Wong, J.R., and Opgenorth, T.J.,J. Med. Chem., 1996, vol. 39, pp. 982–991.CrossRefGoogle Scholar
  17. 17.
    Sikorski, J.A., Devadas, B., Nagarajan, S.R., Zupec, M.E., Freeman, S.K., Brown, D.L., Hwang-Fun Lu, Mehta, P.P., Kishore, N.S., McWherter, C.A., Getman, D.P., and Godon, J.I.,J. Med. Chem., 1997, vol. 40, pp. 1422–1438.PubMedCrossRefGoogle Scholar
  18. 18.
    Veale, C.A., Bernstein, P.R., Bohnert, C.M., Brown, F.J., Bryant, C., Damewood, J.R., Jr., Earley, R., Freeney, S.W., Edwards, P.D., Gomes, B., Hulsizer, J.M., Vacek, E.P., Williams, J.C., Wolanin, D.J., and Woolson, S.,J. Med. Chem., 1997, vol. 40, pp. 3173–3181.PubMedCrossRefGoogle Scholar
  19. 19.
    Gillet, V.J., Willet, P., and Bradshaw, J.,J. Chem. Inf. Sci., 1998, vol. 38, pp. 165–179.CrossRefGoogle Scholar
  20. 20.
    Martynova, N.B. and Poroikov, V.V., Abstracts of Papers,Mezhdunarodnaya nauchnaya konferentsiya “Organicheskii sintez i kombinatornaya khimiya” (Int. Conf.: Organic Synthesis and Combinatorial Chemistry), Moscow, Zvenigorod, 1999.Google Scholar
  21. 21.
    Geronikaki, A., Poroikov, V., Hadjipavlou-Litina, D., Filimonov, D., Lagunin, A., and Mgonzo, R.,Quant. Struct.-Act. Relat., 1999, vol. 18, pp. 16–25.CrossRefGoogle Scholar
  22. 22.
    Trapkov, V.A., Budunova, A.P., Burova, O.A., Filimonov, D.A., and Poroikov, V.V.,Vopr. Med. Khim., 1997, vol. 43, pp. 41–57.PubMedGoogle Scholar
  23. 23.
    Maiboroda, D.A., Babaev, E.V., and Goncharenko, L.V.,Khim.-Farm. Zh., 1998, vol. 32, pp. 24–28.Google Scholar
  24. 24.
    Poroikov, V.V.,Khimiya v Rossii, 1999, vol. 2, pp. 8–12.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • N. B. Martynova
    • 1
  • D. A. Filimonov
    • 1
  • V. V. Poroikov
    • 1
  1. 1.Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations