Advertisement

Russian Journal of Developmental Biology

, Volume 31, Issue 2, pp 71–88 | Cite as

Aspects of the genetic control of development of the autonomous nervous system

  • L. I. Korochkin
Reviews
  • 28 Downloads

Abstract

This article provides a review of current views about the role of cell genetic machinery in the control of development of neurons of the autonomous nervous system. Some of the genes defining migration and specification of these neurons are described. We give a schematic presentation of the genetically determined organization of the neuronal networks, which are a basis of the intramural nervous machinery and sympathetic ganglia. We describe the distribution of neurons with different transmitter specificity in the cell populations comprising the neuronal networks.

Key words

neuron autonomous nervous system neurogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. and Axel, R., A Bipotential Neuroendocrine Precursor whose Choice of Cell Fate Is Determined by NGF and Glucocorticoids,Cell, vol. 47, pp. 1079–1090.Google Scholar
  2. Babkin, B.,Sekretornye mekhanizmy pishchevaritel’nykh zhelez (Secretory Mechanisms of Digestive Glands), Moscow: Inostrannaya Literatura, 1960.Google Scholar
  3. Bogach, P.,Mekhanizmy nervnoi regulyatsii motornoi funktsii kishki (Mechanisms of Nerve Regulation of the Intestine Motor Function), Kiev: Naukova Dumka, 1961.Google Scholar
  4. Bornstein, J. and Furness, J., Correlated Electrophysiological and Histochemical Studies of Submucosus Neurons and Their Contribution in Understanding Enteric Neural Circuits,Z. Autonomous Nervous System, 1988, vol. 25, pp. 1–13.CrossRefGoogle Scholar
  5. Brodsky, V.Ya., Nosikov, V.A., Braga, E.V.,et al., Organization of Ribosomal Genes in Interphase Nuclei,Dokl. Akad. Nauk SSSR, 1985, vol. 285, pp. 455–458.Google Scholar
  6. Campos-Ortega, J., Genetics of Early Neurogenesis inD. melanogaster, Trends Neurosci., 1985, vol. 11, pp. 400–405.CrossRefGoogle Scholar
  7. Clerk, N., Furness, J., Bornstein, J. and Kunze, W., Correlation of Electrophysiological and Morphological Characteristics of Myenteric Neurons of the Duodenum in the Guinea-Pig,Neuroscience, 1998, vol. 82, pp. 899–914.CrossRefGoogle Scholar
  8. Coghill, J., Anatomy and the Problem of Behavior, Moscow: Biomedgiz, 1934.Google Scholar
  9. Coujard, R., Degres de differenciacion variable de cellules des plexus intestinaux,Compt. Rend. I’ass. des anat., 1949, vol. 36, pp. 1–10.Google Scholar
  10. DiGeorgio, R., Parodi, J., Brencha, N.,et al., Nitric Oxide Producing Neurons in the Monkey and Human Digestive Tube,J. Comp. Neurol., 1994, vol. 342, pp. 619–627.CrossRefGoogle Scholar
  11. Doupe, A. and Patterson, P., The Developing Nervous System,Current Topics in Neuroendocrinology, New York: Academic, 1982, vol. 2, pp. 23–43.Google Scholar
  12. Droin, J., Nemer, N., Charron, J.,et al., Tissue-Specific Activity of the Pro-Opiomelanocortin (POMC) Gene and Repression by Glucocorticoids,Genome, 1989, vol. 31, pp. 510–519.Google Scholar
  13. Ekblad, E. and Sundler, A., Distribution, Origin, and Projection of Nitric Oxide Synthase-Containing Neurons in Gut and Pancreas,Neuroscience, 1994, vol. 63, no. 1, pp. 233–248.PubMedCrossRefGoogle Scholar
  14. Frumkis, E.I., Morphology and Histochemistry of Neurons of the Appendix under the Conditions of Pathology,Teoreticheskaya i klinicheskaya meditsina (Theoretical and Clinical Therapy), Tomsk: Univ. of Tomsk Press, 1964, no. 3 pp. 38–39.Google Scholar
  15. Furness, J., Costa, M., Rokacus, A.,et al., Galanin-Immunoreative Neurons in the Guinea-Pig Small Intestine: Their Projections and Relationships to Other Enteric Neurons,Cell Tissue Res., 1987, vol. 250, pp. 607–615.PubMedCrossRefGoogle Scholar
  16. Furness, J., Leiwellin-Smith, I., Bornstein, J., and Costa, M., Chemical Neuroanatomy and the Analysis of Neuronal Circuity in the Enteric Nervous System,Handbook of Chemical Neuroanatomy, New York: Elsevier, 1988, vol. 6, pp. 161–218.Google Scholar
  17. Gabella, G., Neuron Size and Number in the Myenteric Plexus of the Newborn and Adult Rat,J. Anat., 1971, vol. 109, pp. 81–95.PubMedGoogle Scholar
  18. Gabella, G., Fine Structure of the Myentericus Plexus in the Guinea-Pig Ileum,J. Anat., 1972, vol. 111, pp. 69–97.PubMedGoogle Scholar
  19. Gershon, M., Genes and Lineages in the Formation of the Enteric Nervous System,Current Opinion in Neurobiology, 1997, vol. 7, pp. 101–109.PubMedCrossRefGoogle Scholar
  20. Gol’dberg, E.D., Korochkin, L.I., and Kondakova, G.I., Some Histochemical Changes in Animal Organs after Irradiation, inTsitokhimiya nukleinovykh kislot (Cytochemistry of Nucleic Acids), Tomsk: Univ. of Tomsk Press, 1964, pp. 159–166.Google Scholar
  21. Hoffman, H. and Schnitzlein, H., The Number of Nerve Fibers in the Vagus Nerve of Man,Anat. Res., 1961, vol. 139, pp. 429–439.CrossRefGoogle Scholar
  22. Ivanov, I.F., About the Development of Neuronal Theory, inProblemy morfologii nervnoi sistemy (Problems of Morphology of the Nervous System), Moscow: Nauka, 1956, pp. 43–51.Google Scholar
  23. Khlopin, N.G.,Obshchebiologisheskie i eksperimental’nye osnovy gistologii (General Biological and Experimental Bases of Histology), Leningrad: Akad. Nauk SSSR, 1946.Google Scholar
  24. Kolosov, N.G.,Innervatsiya vnutrennikh organov i serdechnososudistoi sistemy (Innervation of Inner Organs and the Cardiovascular System), Moscow: Akad. Nauk SSSR, 1954.Google Scholar
  25. Kolchinskii, A.A., Vashakidze, R.V., Anan’ev, E.V.,et al., Genes ofDrosophila melanogaster Coding for mRNA: Cloning, Localization, and Expression,Mol. Biol., 1985, vol. 19, pp. 1569–1578.Google Scholar
  26. Korochkin, L.I. and Korochkina, L.S., Cytochemical Study of Neuron Aging in the Rat Gut,Teoreticheskaya i klinicheskaya meditsina (Theoretical and Clinical Therapy), Tomsk: Univ. of Tomsk Press, 1964, no. 3, pp. 13–15.Google Scholar
  27. Korochkin, L.I.,Differentsirovka i starenie vegetativnogo neirona (Differentiation and Aging of the Vegetative Neuron), Moscow: Nauka, 1965a.Google Scholar
  28. Korochkin, L.I., Functional and Reactive Properties of the Vegetative Neuron, inTeoreticheskaya i klinicheskaya meditsina (Theoretical and Clinical Therapy), Tomsk: Univ. of Tomsk Press, 1965b. no. 5, pp. 13–18.Google Scholar
  29. Korochkin, L.I. and Sukhodolo, V.D., Some Data on Neurohistology and Neurochemistry of Motor and Secretory Activity of Dog Intestine,Arkh. Anat. Gistol. Embriol., 1965, vol. 40, pp. 23–30.Google Scholar
  30. Korochkin, L.I., Cytochemistry and Cytophysiology of the Vegetative Neuron,Arkh. Anat. Gistol. Embriol., 1966, vol. 50, pp. 101–111.PubMedGoogle Scholar
  31. Korochkin, L.I., Morphological and Cytological Divergency in Neurocytogenesis of Vegetative Neurons,Z. mikrosk.-anat. Forschung, 1966, vol. 75, pp. 1–19.CrossRefGoogle Scholar
  32. Korochkin, L.I. and Korochkina, L.S., The Effect of Actinomycin on Synthesis of Protein in Differentiating Cortical Neurons,Arkh. Anat. Gistol. Embriol., 1966, vol. 54, pp. 82–86.Google Scholar
  33. Korochkin, L. and Sukhodolo, V.D., Neurohistology and Cytochemistry of Motor and Secretory Activity of the Dog’s Intestine,Federation Proc., 1966, vol. 25, pp. 561–565.Google Scholar
  34. Korochkin, L., Some Regularities of Neuroembryogenesis,Recent Advances in Anatomical Research in the USSR, Jdanov, D., Ed., Moscow: Mir, 1970, pp. 53–65.Google Scholar
  35. Korochkin, L. and Korochkina, L., Hormonal Influence on the Differentiation of Nerve Cells of Sympathetic and Parasympathetic Nervous System,Z. mikrosk.-anat. Forschung, 1970, vol. 82, pp. 293–321.Google Scholar
  36. Korochkin, L. and Korochkina, L., The Influence of Actinomycin on the Development of Brain Cortex in Rats in Postnatal Development,Z. für Hirnforschung, 1971, vol. 13, pp. 97–104.Google Scholar
  37. Korochkin, L.I., Gene Interactions in Development, Berlin: Springer, 1981.Google Scholar
  38. Korochkin, L.I., The Genetic Control of Neurogenesis,Ontogenez, 1989, vol. 20, pp. 593–606.PubMedGoogle Scholar
  39. Koshtoyants, G.V. and Mitropolitanskaya, R.A., Physiology of Animals in Ontogenesis,Fiziol. Zh. SSSR, 1934, vol. 17, pp. 1309–1331.Google Scholar
  40. Lavrentiev, B., Zur Lehre von der Cytoarchitektonik des peripherischen autonome Nervensysteme,Z. mikrosk.-anat. Forschung, 1931, vol. 42, pp. 527–552.Google Scholar
  41. Lavrent’ev, B.I., Morphology of Antagonistic Innervation of the Autonomous Nervous System, inMorfologiya avtonomnoi nervnoi sistemy (Morphology of Autonomous Nervous System), Moscow: Medgiz, 1946, pp. 12–83.Google Scholar
  42. Li, Z., Young, H., and Furness, J., Nitric Oxide Synthase in Neurons of the Gastrointestinal Tract of an Avian Species,Coturnix Coturnix, J. Anat., 1994, vol. 94, pp. 261–272.Google Scholar
  43. Li, Z., Young, H., and Furness, J., Do Vasoactive Intestinal Peptide (VIP)- and Nitric Oxide Synthase-Immunoreactive Terminals Synapse Exclusively with VIP Cell Bodies in the Submucous Plexus of the Guinea-Pig Ileum?,Cell Tissue Res., 1995, vol. 281, pp. 485–491.PubMedGoogle Scholar
  44. Lisova, N.E., Cytochemistry of Nucleic Acid and Proteins in the Autonomous Nervous System of Fish and Amphibia, inTsitokhimiya nukleinovykh kislot (Cytochemistry of Nucleic Acids), Tomsk: Univ. of Tomsk Press, 1964, pp. 33–35.Google Scholar
  45. Lomax, A., Bertrand, P., and Furness, J., Identification of the Populations of Enteric Neurons that Have NK1 Tachykinin Receptors in the Guinea-Pig Small Intestine,Cell Tissue Res., 1998, vol. 294, pp. 27–33.PubMedCrossRefGoogle Scholar
  46. Mann, P., Souuthwell, B., Young, H., and Furness, J., Appositions Made by Axons of Descending Interneurons in the Guinea-Pig Small Intestine, Investigated by Confocal Microscopy,J. Chem. Neuroanatom., 1997, vol. 12, pp. 151–164.CrossRefGoogle Scholar
  47. Marshak, T.L., Karavanov, A.A., Korochkin, L.I.,et al., Heterogeneity of Cerebellum Nerve Cells in Terms of Topography and Number of Ribosomal Genes,Tsitologiya, 1986, vol. 28, pp. 360–366.Google Scholar
  48. Messenger, J., Immunohistochemical Analysis of Neurons and Their Projections in the Proximal Colon of Guinea-Pig,Arch. Histol. Cytol., 1993, vol. 56, pp. 459–474.PubMedGoogle Scholar
  49. Milokhin, A.A.,Chuvstvitel’naya innervatsiya vegetativnykh neironov (Sensitive Innervation of Vegetative Neurons), Leningrad: Nauka, 1967.Google Scholar
  50. Neyfakh, A.A.,Problemy vzaimootnoshenii yadra i tsitoplazmy v razvitii (Problems of Interaction between the Nucleus and the Cytoplasm in Development), Moscow: Nauka, 1962.Google Scholar
  51. Nozdrachev, A.D., and Chumasov, E.I.,Perifericheskaya nervnaya sistema (Peripheral Nervous System), St. Petersburg: Nauka, 1999.Google Scholar
  52. Olenev, S.N.,Razvivayushchiisya mozg (The Developing Brain), Leningrad: Nauka, 1978.Google Scholar
  53. Plechkova, E.V.,Reaktsiya nervnoi sistemy na khronicheskuyu degeneratsiyu perifericheskogo nerva (The Response of the Nervous System to Chronic Degeneration of the Peripheral Nerve), Moscow: Medgiz, 1961.Google Scholar
  54. Ryzhov, A.I., Concerning the State of Nucleic Acid Metabolism in Nerve Elements of the Digestive Tract during Irradiation,Byull. Morf. Fiziol., 1961, no. 1, pp. 61–73.Google Scholar
  55. Savvateeva, E., Labasova, E., and Korochkin, L., Isozymes of Cyclic Nucleotide Phosphodiesterase inDrosophila Temperature-Sensitive Mutants with Impaired cAMP Metabolism,Isozyme Bull., 1982a, vol. 15, pp. 105–107.Google Scholar
  56. Savvateeva, E. and Korochkin, L., Adenilate Cyclase Isozymes inDrosophila Temperature-Sensitive Mutants with Impaired cAMP Metabolism,Isozyme Bull., 1982b, vol. 15, pp. 107–108.Google Scholar
  57. Savvateeva, E.V., Peresleni, E.V., and Korochkin, L.I., Cyclic AMP and Motor Activity ofDrosophila, Dokl. Akad. Nauk SSSR, 1985, vol. 281, pp. 966–970.Google Scholar
  58. Savvateeva, E., Peresleni, E., Ivanushina, V., and Korochkin, L., Expression of Adenilate Cyclase and Phosphodiesterase in the Development of Temperature-Sensitive Mutants with Impaired Metabolism of cAMP inDrosophila melanogaster, Develop. Genetics, 1985, vol. 5, pp. 157–172.CrossRefGoogle Scholar
  59. Schmalhausen, I.I.,Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism as a Whole in Individual and Phylogenetic Development), Moscow: Nauka, 1982.Google Scholar
  60. Sharkey, K., Lomax, A., Bertrand, P., and Furness, J., Electrophysiology, Shape, and Chemistry of Neurons That Project from Guinea Pig Colon to Inferior Mesenteric Ganglia,Gastroenterology, 1998, vol. 115, pp. 909–918.PubMedCrossRefGoogle Scholar
  61. Skok, V.I. and Ivanov, A.Ya.,Estestvennaya aktivnost’ vegetativykh gangliev (Natural Activity of Vegetative Ganglia), Kiev: Naukova Dumka, 1989.Google Scholar
  62. Sluchanko, E.I., Changes in the Neurotransmission in the Wall of the Gut in Response to Laser Puncture in Comprehensive Treatment of Experimental Postoperative Paresis of the Intestine,Med. Ekolog., 1996, vol. 1, pp. 118–120.Google Scholar
  63. Song, Z., Brookes, S., and Costa, M., Characterization of Alkaline Phosphatase Reactive Neurons in the Guinea-Pig Small Intestine,Neuroscience, 1994, vol. 63, pp. 1153–1167.PubMedCrossRefGoogle Scholar
  64. Soshnikova, M.Ya., Enzymatic Activity of Neurons of the Intramural Apparatus of the Stomach in the Ulcer Disease, (Theoretical and Clinical Therapy), Tomsk: Univ. of Tomsk Press, 1964, pp. 40–44.Google Scholar
  65. Sosunov, A., Kruglyakov, P., Belyanina, G.,et al., Maturation and Ageing of Autonomic Neurons,Clin. Neuropathol., 1992, vol. 11, pp. 233–241.Google Scholar
  66. Steele, P., Brookes, S., and Costa, M., Immunohistochemical Identification of Cholinergic Neurons in the Myenteric Plexus of Guinea-Pig Small Intestine,Neuroscience, 1991, vol. 45, pp. 227–239.PubMedCrossRefGoogle Scholar
  67. Tetyaeva, M.V.,Evolyutsiya funktsii bluzhdayushchego nerva (Evolution of Vagal Functions), Moscow: Akademizdat, 1960.Google Scholar
  68. Uemura, S., Pompolo, S., and Furness, J., Colocalization of Neuropeptide Y with Other Neurochemical Markers in the Guinea-Pig Small Intestine,Arch. Histol. Cytol., 1995, vol. 58, pp. 523–536.PubMedGoogle Scholar
  69. Wardell, C., Bornstein, J., and Furness, J., Projections of 5-Hydroxytryptamine-Immunoreactive Neurons in Guinea-Pig Distal Colon,Cell Tissue Res., 1994, vol. 278, pp. 379–387.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • L. I. Korochkin
    • 1
  1. 1.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations