Advertisement

Molecular Neurobiology

, Volume 6, Issue 4, pp 323–337 | Cite as

Compartmentalization of monoaminergic synaptic vesicles in the storage and release of neurotransmitter

  • Amanda Pellegrino de Iraldi
Article

Abstract

Monoaminergic nerves are characterized by the presence of a population of small synaptic vesicles (40–60 nm in diameter) containing a few large vesicles (80–90 nm in diameter). Thus, although both types of vesicles contain monoamines, the small vesicles must be considered as the organoid responsible for the storage and release of the neurotransmitter, whereas the large ones possibly are involved in the modulation of the process. The small vesicles are electron-lucent or have an osmiophilic electron-dense core that is always linked to the vesicle membrane. Considering morphological and histochemical evidence under different experimental conditions, we proposed the existence of two compartments in the small vesicles: the core and the matrix, corresponding respectively to the electron-dense core and the electron-lucent space between the core and the vesicle membrane in osmium tetroxide fixations. The sizes of both compartments are inversely related, i.e., the smaller the core, the larger the matrix and vice versa. The core even disappears, giving way to a small electron-lucent vesicle made exclusively by the matrix. Thus, the matrix is a constant component of the vesicle, whereas the core is a transient one. Each compartment has a different pool of amine: a loosely bound, easily releasable pool in the matrix and a tightly bound, more resistant pool in the core. These two pools subserve, respectively, a tonic or phasic release of the neurotransmitter, correlated with a tonic or phasic stimulation of the receptor. The core may be considered as a storage or reserve pool. Experimental evidence from our laboratory supports the concept that different mechanisms are opertive in both compartments in the release of the neurotransmitter. For instance, a Ca2+-independent release would be primarily concerned with the neurotransmitter contained in the matrix, and a Ca2+-dependent efflux would be primarily related with the neurotransmitter stored in the core. However, it still must be established that a simple relationship exists between each kind of stimulus and each vesicle compartment, rather than both compartments being integrated in a dynamic functional unit.

Index Entries

Monoaminergic synaptic vesicles synaptic vesicle compartmentation vesicle pools of monoamines storage of monoamines monoamine release regulation of monoamine release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisby M. A., Fillenz M., and Smith A. D. (1973) Evidence for the presence of dopamine-β-hydroxylase in both populations of noradrenaline storage vesicles in sympathetic nerve terminals of the rat vas deferens.J. Neurochem. 20, 245–248.PubMedCrossRefGoogle Scholar
  2. Blaskowski T. P. and Bogdanski D. F. (1971) Possible role of sodium and calcium in the retention and physiological release of norepinephrine by adrenergic nerve endings.Biochem. Pharmacol. 20, 3281–3294.CrossRefGoogle Scholar
  3. Bloom F. E. (1972) Electron microscopy of the catecholamine containing structures,Catecholamines, Blashko H. and Musholl E., eds., Springer Verlag, Berlin, pp. 46–78.Google Scholar
  4. Bloom F. E. and Barrnett R. J. (1966) Fine structural localization in vesicles of autonomic nerve endings.Nature 210, 599–601.PubMedCrossRefGoogle Scholar
  5. Boyne A. F., Bohan T. P., and Williams T. H. (1974) Effects of calcium containing fixations solutions on cholinergic synaptic vesicles.J. Cell. Biol. 63, 780–795.PubMedCrossRefGoogle Scholar
  6. Chubb I., DePotter W. P., and De Schaepdryver A. F. (1970) Evidence for two types of noradrenergic storage particles in dog spleen.Nature 228, 1203, 1204.PubMedCrossRefGoogle Scholar
  7. De Robertis E. and Bennett H. S. (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm.J. Biophys. Biochem. Cytol. 1, 47–68.CrossRefGoogle Scholar
  8. De Robertis E. and Pellegrino de Iraldi A. (1961) A plurivesicular component in adrenergic nerves.Anat. Rec. 139, 299.Google Scholar
  9. De Robertis E., Rodríguez de Lores Arnaiz G., and Pellegrino de Iraldi A. (1962) Isolation of synaptic vesicles from nerve endings of the rat brain.Nature 194, 749–795.CrossRefGoogle Scholar
  10. Eränkö L. (1972) Ultrastructure of developing sympathetic nerve cell and the storage of catecholamines.Brain Res. 46, 159–175.PubMedCrossRefGoogle Scholar
  11. Fairbrother I. S., Arbuthnott G. M., Kelly J. S., and Butcher S. P. (1990) In vivo mechanisms underlying dopamine release from rat nigrostriatal terminals: studies using veratrine and ouabain.J. Neurochem. 54, 1834–1843.PubMedCrossRefGoogle Scholar
  12. Flack B. (1962) Observations on the possibilities of the cellular localization of monoamines by a fluorescence method.Acta Physiol. Scand. 56 (Suppl. 197), 1.Google Scholar
  13. Fatt P. and Katz B. (1952) Spontaneous subthreshold activity and motor nerve endings.J. Physiol. 117, 109–123.PubMedGoogle Scholar
  14. Flllenz M. and Pollard R. M. (1976) Quantitative differences between sympathetic nerve terminals.Brain Res. 109, 443–454.CrossRefGoogle Scholar
  15. Fried G. (1980) Small noradrenergic storage vesicles isolated from rat vas deferens: biochemical and morphological characterization.Acta Physiol. Scand. 493 (Suppl.), 1–28.Google Scholar
  16. Fried G., Thureson-Klein A., and Lagercrantz H. (1981) Noradrenaline content correlated to matrix density in small noradrenergic vesicles from rat seminal ducts.Neuroscience 6, 787–800.PubMedCrossRefGoogle Scholar
  17. Geffen L. and Livett B. G. (1971) Synaptic vesicles in sympathetic neurons.Physiol. Rev. 51, 98–157.PubMedGoogle Scholar
  18. Gordon R., Reid V., Sjöerdsma A., and Udenfriend S. (1966) Increased synthesis of norepinephrine in the rat heart on electrical stimulation of the stellate ganglia.Mol. Pharmacol. 2, 113–125.Google Scholar
  19. Haycock J. W., Levy W. B., Denner L. A., and Cotman C. W. (1978) Effects of elevated (K+) on the neurotransmitter from cortical synaptosomes: efflux or secretion?J. Neurochem. 30, 113–125.CrossRefGoogle Scholar
  20. Hökfelt T. (1966) The effect of reserpine on the intraneuronal vesicles of the rat pineal and vas deferens.Experientia 22, 56, 57.PubMedCrossRefGoogle Scholar
  21. Hökfelt T. (1968) In vitro studies of central and peripheral monoamine neurons at the ultrastructural level.Z. Zellforsch. Mikrosk. Anat. 91, 1–74.PubMedCrossRefGoogle Scholar
  22. Hökfelt T. (1971) Ultrastructural localization of intraneuronal monoamines: some aspects on methodology,Histochemistry of Nervous Transmission, Eränkö, O., ed., Elsevier, Amsterdam, London, New York, pp. 213–222.Google Scholar
  23. Hökfelt T. and Jonsson G. (1968) Studies on reaction and binding of monoamines after fixation and processing for electron microscopy with special reference to fixation with potassium permanganate.Histochemie 16, 45–67.PubMedCrossRefGoogle Scholar
  24. Iraldi C. and Pellegrino de Iraldi A. (1987) Calcium binding sites in the Discopygetschudii electrocyte: physiological implications.Microscopía Electrónica y Biología Cellular 11, 197–215.Google Scholar
  25. Iwayama T. and Furness J. B. (1971) Enhancement of the granulation of adrenergic storage vesicles in drug-free solution.J. Cell Biol. 18, 699–703.CrossRefGoogle Scholar
  26. Jaim Etcheverry G. and Zieher L. M. (1969) Selective demonstration of a type of synaptic vesicle by phosphotungtic acid staining.J. Cell Biol. 43, 855–860.CrossRefGoogle Scholar
  27. Kandel E. R. and Schwartz J. H. (1982) Molecular biology of learning: modulation of transmitter release.Science 218, 433–448.PubMedCrossRefGoogle Scholar
  28. Katz B. (1966)Nerve, Muscle and Synapse. McGraw-Hill, New York, pp. 139–141.Google Scholar
  29. Katz B. and Miledi R. (1967) Ionic requirements of synaptic transmitter release.Nature 215, 651.PubMedCrossRefGoogle Scholar
  30. Klein R. L. (1973) A large second pool of norepinephrine in a highly purified vesicle fraction from bovine splenic nerve.Frontiers in Catecholamine Research, Pergamon, New York, pp. 423–425.Google Scholar
  31. Klein R. L. and Lagercrantz H. (1982) Insights into the functional role of the noradrenergic vesicles,Neurotransmitter Vesicles, Klein R. L., Lagercrantz, H., and Zimmermann H., eds., Academic, New York, pp. 219–239.Google Scholar
  32. Klein R. L. and Thureson-Klein A. K. (1984) Noradrenergic vesicles.Handbook of Neurochemistry, vol. 7, Lajtha A., ed., Plenum, New York, pp. 71–109.Google Scholar
  33. Klein R. L., Thureson-Klein A. K., Chen Yen S.-H., Baggett J. McC., Gasparins M. S., and Kirksey D. F. (1979) Dopamine-hydroxylase distribution in density gradients: physiological and artefactual implications.J. Neurobiol. 10, 291–307.PubMedCrossRefGoogle Scholar
  34. Lara H. and Belmar J. (1989) Biochemical evidence of small and large noradrenergic storage vesicles isolated from cat ovary in isoosmotic conditions: distribution of dopamine-β-hydroxylase activity.Neurochem. Int. 15, 445–454.CrossRefGoogle Scholar
  35. Luco J. V. and Goñi F. (1948) Synaptic fatigue and chemical mediators of post-ganglionic fibers.J. Neurophysiol. 11, 497–500.PubMedGoogle Scholar
  36. Llinás R., Stenberg I. Z., and Walton K. (1976) Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate.Proc. Nat. Acad. Sci. USA. 73, 2918–2922.PubMedCrossRefGoogle Scholar
  37. Miledi R. and Thies R. (1971) Tetanic and posttetanic rise in frequency of miniature end plate and potentials in low calcium solutions.J. Physiol. 212, 245–257.PubMedGoogle Scholar
  38. Molinoff P. B., Brimijoin S., Weinshilboum R., and Axelrod J. (1970) Neurally mediated increase in dopamine-beta hydroxylase activity.Proc. Nat. Acad. Sci. USA 66, 453–458.PubMedCrossRefGoogle Scholar
  39. Nelson D. L. and Molinoff P. B. (1976) Distribution and properties of adrenergic storage vesicles in nerve terminals.J. Pharmacol. Exp. Ther. 196, 346–358.PubMedGoogle Scholar
  40. Neuman B., Wiedremann C. J., Fisher-Collbrie R., Schober M., Sperk G., and Winkler H. (1984) Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens.Neuroscience 13, 921–931.PubMedCrossRefGoogle Scholar
  41. Pappas G. D. and Rose S. (1976) Localization of calcium deposits in the frog neuromuscular junction at rest and following stimulation.Brain Res. 103, 362–365.PubMedCrossRefGoogle Scholar
  42. Paton D. M., Vizi E. S., and Zar M. A. (1971) The mechanism of acetylcholine release from parasympathetic nerves.J. Physiol. 215, 819–848.PubMedGoogle Scholar
  43. Pearse A. G. E. (1980) The chemisty and practice of fixation.Histochemistry Theoretical and Applied, vol. 1, Churchill-Livingstone, Edinburgh, pp. 133,134.Google Scholar
  44. Pellegrino de Iraldi A. (1975) Localizing-SH groups in monoaminergic synaptic vesicles with the mixture of zinc iodide-osmium tetroxide (ZIO).Brain Res. 94, 363–367.CrossRefGoogle Scholar
  45. Pellegrino de Iraldi A. (1977) Significance of the Maillet method (ZIO) for cytochemical studies of subcellular structures.Experientia 33, 1–10.CrossRefGoogle Scholar
  46. Pellegrino de Iraldi A. (1980) Compartmentation of synaptic vesicles in autonomic neurons: morphological correlates of neurotransmitter pools in monoaminergic synapses; the vesicles as dual quantal elements in transmitter storage and release,Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons, Eränkö O., Soinila S., and Päirävinta H., eds., Raven, New York, pp. 255–268.Google Scholar
  47. Pellegrino de Iraldi A. (1983) Compartmentation of monoaminergic synaptic vesicles: physiological implications,Neural Transmission, Learning and Memory, Caputto R. and Ajmore C., eds., Raven, New York, pp. 65–79.Google Scholar
  48. Pellegrino de Iraldi A. and Cardoni R. (1979) ZIO staining of the synaptic vesicles of the rat pineal nerves after inhibition of serotonin and noradrenaline synthesizing enzymes.Cell Tissue Res. 200, 91–100.PubMedCrossRefGoogle Scholar
  49. Pellegrino de Iraldi A. and Corazza J. P. (1981a) A calcium binding site modifiable by electrical stimulation in the monoaminergic vesicles of rat pineal nerves.Cell Tissue. Res. 16, 625–635.Google Scholar
  50. Pellegrino de Iraldi A. and Corazza J. P. (1981b) Two pools of amines in synaptic vesicles of rat pineal nerves.Rev. Can. Biol. 49, 101–109.Google Scholar
  51. Pellegrino de Iraldi A. and Corazza J. P. (1983a) Uptake and storage of 5-hydroxydopamine in rat pineal nerves after electrical stimulation.J. Neural Transmission 58, 271–280.CrossRefGoogle Scholar
  52. Pellegrino de Iraldi A. and Corazza J. P. (1983b) Uptake and storage of 5-hydroxydopamine in rat pineal nerves after electrical stimulation,Frontiers in Neuroscience, Fidia Research Series, Fidia Research Foundation, Sardinia, Italy, pp. 264, 265.Google Scholar
  53. Pellegrino de Iraldi A. and Corazza J. P. (1983c) Asynchronous operation of monoaminergic synaptic vesicles.Com. Biol. 2, 213–222.Google Scholar
  54. Pellegrino de Iraldi A., Corazza, J. P., and Tomás R. (1991) Effect of pyridine and its methylated derivatives on the release of monoamines in the rat pineal gland (abstract)J. Neurochem. 57, (Suppl.)S, 134B.Google Scholar
  55. Pellegrino de Iraldi A. and De Robertis E. (1961) Action of reserpine on the submiroscopic morphology of the pineal gland.Experientia 17, 122, 123.PubMedCrossRefGoogle Scholar
  56. Pellegrino de Iraldi A. and Gueudet R. (1968) Action of reserpine on the osmium tetroxide-zinc iodide reactive sites of synaptic vesicles in the pineal nerves of the rat.Z. Zellforsch. Mikrosk. Anat. 91, 178–185.PubMedCrossRefGoogle Scholar
  57. Pellegrino de Iraldi A. and Gueudet R. (1969) Catecholamine and serotonin in granulated vesicles of nerve endings in the pineal gland of the rat.Int. J. Neuropharmacol. 8, 9–14.CrossRefGoogle Scholar
  58. Pellegrino de Iraldi A. and Rodríguez de Lores Arnaiz G. (1989) Effect of ouabain on the storage and release of neurotransmitters in monoaminergic synaptic vesicles: a histochemical study (abstract)J. Neurochem. 52 (Suppl.), S78.Google Scholar
  59. Pellegrino de Iraldi A. and Suburo A. (1971) Two compartments in the granulated vesicles of the rat pineal nerve,The Pineal Gland, Wolstenholme G. E. and Knight J., eds., Ciba Foundation Symposium, Churchill-Livingston, Edinburgh, pp. 177–195.Google Scholar
  60. Pellegrino de Iraldi A. and Suburo A. (1972a) Effect of tyramine on the compartments of granulated vesicles of rat pineal nerve endings.Eur. J. Neuropharmacol. 19, 251–259.CrossRefGoogle Scholar
  61. Pellegrino de Iraldi A. and Suburo, A. (1972b) Morphological evidence of a connection between the core of granulated vesicles and their membrane.Neurobiology 2, 8–11.PubMedGoogle Scholar
  62. Pellegrino de Iraldi A., Farini Duggan H., and De Robertis E. (1963) Adrenergic synaptic vesicles in the anterior hypothalamus of the rat.Anat. Rec. 145, 521–531.CrossRefGoogle Scholar
  63. Pellegrino de Iraldi A., Gueudet, R., and Suburo A. (1971) Differentiation between 5-hydroxytryptamine and catecholamines in synaptic vesicles.Prog. Brain Res. 34, 161–170.CrossRefGoogle Scholar
  64. Pellegrino de Iraldi A., Zieher, L. M., and De Robertis E. (1965) Ultrastructure and pharmacological studies of nerve endings in the pineal organ,Structure and Function of the Ephiphysis Cerebri, Progress in Brain Research, vol. 10, Kappers J. A. and Shadé J. P., eds., Elsevier, Amsterdam, pp. 389–422.Google Scholar
  65. Politoff A. L., Rose S., and Pappas G. D. (1974) The calcium binding sites of synaptic vesicles of the frog neuromuscular junction.J. Cell Biol. 61, 818–830.PubMedCrossRefGoogle Scholar
  66. Rahamimoff R. (1977) The regulation of intracellular calcium concentration and transmitter release,Depolarization-Release Coupling Systems in Neurons, Neuroscience Research Program Bull. vol. 15, MIT Press, Cambridge, MA, pp. 575–581.Google Scholar
  67. Reinecke M. and Walther C. (1978) Aspects of turnover and biogenesis of synaptic vesicles at locust neuromuscular junctions as revealed by zinc iodide-osmium tetroxide (ZIO) reacting with intravesicular-SH groups.J. Cell. Biol. 78, 839–855.PubMedCrossRefGoogle Scholar
  68. Richards J. G. and Da Prada M. (1977) Uranaffin reaction: a cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amine.J. Histochem. Cytochem. 25, 1322–1326.PubMedGoogle Scholar
  69. Rodríguez de Lores Arnaiz G. and Pellegrino de Iraldi A. (1989) Release of catecholamines by and endogenous inhibitor of neuronal Na+K+-ATPase (abstract).J. Neurochem. 52 (Suppl.), S79.Google Scholar
  70. Rodríguez de Lores Arnaiz G. and Pellegrino de Iraldi A. (1990) Possible involvement of Na+K+-ATPase inhibition in the neurotransmitter release induce by collidine.Neurosci. Lett. 108, 309–313.PubMedCrossRefGoogle Scholar
  71. Rush R. A., Millar T. J., Chubb I. W., and Geffen L. B. (1978) Use of dopamine-hydroxylase in the study of vesicle dynamics.Catecholamines: Basic and Clinical Frontiers, Usdin E., Kopin I., and Barchas J., eds., Pergamon, New York, pp. 331–333.Google Scholar
  72. Schwarzenbrunner U., Echmiedle T., Obendorf D., Scherman D., Hook V., Fischer-Collbrie R., and Winkler H. (1990) Sympathetic axons and nerve terminals, the protein composition of small and large dense-core vesicles and of a third type of vesicles.Neuroscience 37, 819–827.PubMedCrossRefGoogle Scholar
  73. Slotkin T. A., Ferris R., and Kirshner N. (1971) Compartmental analysis of amine storage in bovine adrenal medullary granules.Mol. Pharmacol. 8, 308–316.Google Scholar
  74. Thoenen H., Mueller R. A., and Axelrod J. (1970) Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurons.Proc. Nat. Acad. Sci. USA 65, 58–62.PubMedCrossRefGoogle Scholar
  75. Thureson-Klein A. (1982) Fine structure of isolated noradrenergic vesicles,Neurotransmitter Vesicles, Klein, R. L., Lagercrantz, H., and Zimmerman H., eds., Academic, New York, pp. 119–132.Google Scholar
  76. Thureson-Klein A. K. (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals.Neuroscience 10, 245–259.PubMedCrossRefGoogle Scholar
  77. Thureson-Klein A. K. and Klein R. I. (1990) Exocytosis from neuronal large dense-cored vesicles.Int. Rev. Cytol. 121, 67–126.PubMedGoogle Scholar
  78. Tomsig J. L. and Pellegrino de Iraldi A. (1986) Effect of collidine (2–4–6 methylpyridine) on the granulated vesicles of the rat vas deferens nerves.Com. Biol. 5, 237–245.Google Scholar
  79. Tomsig J. L. and Pellegrino de Iraldi A. (1987) Effect of collidine (2–4–6-methylpyridine) on the osmiophilia and chromaffin reaction in the synaptic vesicles of rat pineal nerves.Histochemistry 87, 21–25.PubMedCrossRefGoogle Scholar
  80. Tomsig J. L. and Pellegrino de Iraldi A. (1988) Effect of collidine (2–4–6-methylpyridine) on the rat pineal gland and vas deferens nerves: further evidence of monoamine releasing effect.Histochemistry 89, 301–306.PubMedCrossRefGoogle Scholar
  81. Tranzer J. P. (1973) New aspects of the localization of catecholamines in adrenerdc neurons,Frontiers in Catecholamine Research, Pergamon, New York, pp. 453–458.Google Scholar
  82. Tranzer J. P. and Richards J. G. (1976) Ultrastructural cytochemistry of biogenic amines in nervous tissue.J. Histochem. Cytochem. 24, 1178–1193.PubMedGoogle Scholar
  83. Tranzer J. P. and Thoenen H. (1967) Electron microscopic localization of 5-hydroxydopamine (3,4,5-trihydroxyphenylethylamine) a new “false sympathetic transmitter.”Experientia 23, 743–745.PubMedCrossRefGoogle Scholar
  84. Van Orden L. S. III, Bensch K. G., and Giarman N. J. (1976) Histochemical and functional relationships of catecholamines in adrenergic nerve endings: extravesicular norepinephrine.J. Pharmac. Exp. Ther. 155, 428–439.Google Scholar
  85. Van Orden, L. S. III, Bloom F. E., Barrnett J. R., and Giarman N. J. (1966) Histochemical and functional relationship of catecholamines in adrenergic nerve endings: participation of granular vesicles.J. Pharmac. Exp. Ther. 154, 185–199.Google Scholar
  86. Vizi E. S. (1978) Na+K+-activated adenosintriphosphatase as a trigger in transmitter release.Neuroscience,3, 367–384.PubMedCrossRefGoogle Scholar
  87. von Euler U. S. and Bjorkman S. (1955) Effect of increased adrenergic nerve activity on content of noradrenaline in the cat organs.Acta Physiol. Scand. 33 (Suppl. 118), 17–20.Google Scholar
  88. von Euler U. S. and Hillarp N. A. (1956) Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons.Nature 177, 44, 45.CrossRefGoogle Scholar
  89. Willems M. F. and De Potter W. P. (1983) An improved method for the purification of “light” noradrenaline vesicles from rat vas deferens: some biochemical characteristics.J. Neurochem. 41, 466–472.PubMedCrossRefGoogle Scholar
  90. Wood J. G. (1967) Cytochemical localization of 5-hydroxytryptamine (5-HT) in the cerebral nervous tissue.Anat. Rec. 157, 343, 344.CrossRefGoogle Scholar
  91. Zimmermann H. (1982) Insights into the functional role of cholinergic vesicles,Neurotransmitter Vesicles, Klein R. L., Lagercrantz H., and Zimmermann H., eds., Academic, New York, pp. 305–354.Google Scholar

Copyright information

© Humana Press, Inc 1993

Authors and Affiliations

  • Amanda Pellegrino de Iraldi
    • 1
  1. 1.Instituto de Biología Celular, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresRepública Argentina

Personalised recommendations