Advertisement

Bulletin of Materials Science

, Volume 17, Issue 6, pp 977–987 | Cite as

Combustion synthesis of oxide materials for nuclear waste immobilization

  • M Muthuraman
  • N Arul Dhas
  • K C Patil
Article

Abstract

Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450°C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and29Si MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85–95% dense ceramics in the temperature range 1000°–1300°C.

Keywords

Combustion synthesis SYNROC nuclear waste immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth C and Jones R G 1955J. Am. Chem. Soc. 77 621CrossRefGoogle Scholar
  2. Arul Dhas N and Patil K C 1993J. Mater. Chem. 3 1289CrossRefGoogle Scholar
  3. Arul Dhas N and Patil K C 1994J. Mater. Chem. 4 491CrossRefGoogle Scholar
  4. Chen S K and Liu H S 1994J. Mater. Sci. 29 2921CrossRefGoogle Scholar
  5. Clarke D R 1983Ann. Rev. Mater. Sci. 13 191CrossRefGoogle Scholar
  6. Hayward P J and Cecchetto E V 1984 inScientific basis for nuclear waste management (ed) Z Lutze (New York: Elsevier) Vol. 5, p. 91Google Scholar
  7. Hayward P J, Vance E R, Cann C D and Mitchell S L 1984 inAdvances in ceramics (ed) G G Wicks and W A Ross (Ohio: American Ceramic Society, Columbus) Vol 8, p. 291Google Scholar
  8. Irani R R and Callis C F 1963 inParticle size: measurement, interpretation and application (New York: John Wiley) p. 125Google Scholar
  9. Jain S R, Adiga K C and Pai Verneker V R 1981Combust. Flame 40 71CrossRefGoogle Scholar
  10. Lippmaa E, Magi M, Samoson A, Engelhardt G and Grimmer A R 1980J. Am. Chem. Soc. 102 4889CrossRefGoogle Scholar
  11. MacCarthy G J 1976Trans. Am. Nucl. Soc. 23 168Google Scholar
  12. MacCarthy G J 1979 inScientific basis for nuclear waste management (ed) MacCarthy G J (New York: Plenum) Vol. 1, p. 329Google Scholar
  13. MacCarthy G J and Davidson M T 1975Am. Ceram. Soc. Bull. 54 782Google Scholar
  14. MacCarthy G J, White W B, Rustum Roy, Scheetz B E, Komarneni S, Smith D K and Roy D M 1978Nature (London) 273 216CrossRefGoogle Scholar
  15. Macial G and Sindorf D 1980J. Am. Chem. Soc. 102 7606CrossRefGoogle Scholar
  16. Mashima M 1966Bull. Chem. Soc. Jpn. 39 504CrossRefGoogle Scholar
  17. Mohr E B, Brezinki J J and Audrieth L F 1953Inorg. Synth. 4 32CrossRefGoogle Scholar
  18. Ringwood A E, Kesson S E, Ware N G, Hibberson W and Major A 1979Nature (London) 278 219CrossRefGoogle Scholar
  19. Segal D 1989Chemical synthesis of advanced ceramic materials (Cambridge: Cambridge University Press)Google Scholar
  20. Yamamura H, Tanada M, Tanada H, Shirasaki S and Moriyoshi Y 1985Ceram. Int. 11 17Google Scholar

Copyright information

© Indian Academy of Sciences 1994

Authors and Affiliations

  • M Muthuraman
    • 1
  • N Arul Dhas
    • 1
  • K C Patil
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations