Israel Journal of Mathematics

, Volume 25, Issue 3–4, pp 331–352 | Cite as

The model theory of differential fields revisited

  • Carol Wood


The intent of this article is to provide a general and elementary account of the model theory of differential fields, collecting together various results (many without proof) and offering a few algebraic details for the logician reader. The first model-theoretic look at differential fields was taken by Abraham Robinson in the context of model completeness, while later developments have served to illustrate concepts developed by Morley and Shelah.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Blum,Generalized algebraic structures: A model theoretic approach, Ph.D. Thesis, Massachusetts Institute of Technology, 1968.Google Scholar
  2. 2.
    L. Harrington,Recursively presentable prime models, J. Symbolic Logic39 (1974), 305–309.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. Kaplansky,An Introduction to Differential Algebra, Hermann, Paris, 1957.MATHGoogle Scholar
  4. 4.
    E. R. Kolchin,Constrained extensions of differential fields, Advances in Math.12 (1974), 141–170.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. R. Kolchin,Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.MATHGoogle Scholar
  6. 6.
    M. Morley,Categoricity in power, Trans. Amer. Math. Soc.114 (1965), 514–538.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. F. Ritt,Differential Algebra, Amer. Math. Soc. Colloq. Publ., Vol. 33, New York, 1950.Google Scholar
  8. 8.
    A. Robinson,An Introduction to Model Theory, North-Holland, Amsterdam, 1965.Google Scholar
  9. 9.
    A. Robinson,On the concept of a differentially closed field, Bull. Res. Counc. Isr.8F (1959), 113–128.Google Scholar
  10. 10.
    A. Robinson,Metamathematical problems, J. Symbolic Logic38 (1973), 500–516.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Robinson,The nonminimality of the differential closure, Pacific J. Math.52 (1974), 529–537.MathSciNetGoogle Scholar
  12. 12.
    G. Sacks,The differential closure of a differential field, Bull. Amer. Math. Soc.78 (1972), 629–634.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Sacks,Model theory and applications, C.I.M.E. Lecture Notes, July 1975.Google Scholar
  14. 14.
    G. Sacks,Saturated Model Theory, Benjamin, Reading, Mass., 1972.MATHGoogle Scholar
  15. 15.
    A. Seidenberg,An elimination theory for differential algebra, Univ. Calif. Math. Publications3 (1956), 31–65.MathSciNetGoogle Scholar
  16. 16.
    A. Seidenberg,Some basic theorems in differential algebra, Trans. Amer. Math. Soc.73 (1952), 174–190.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Shelah,Differentially closed fields, Israel J. Math.16 (1973), 314–328.CrossRefMathSciNetGoogle Scholar
  18. 18.
    S. Shelah,The lazy model-theoretician’s guide to stability, Univ. of Louvain, 1975.Google Scholar
  19. 19.
    S. Shelah,The number of non-isomorphic models of an unstable first-order theory, Israel J. Math.9 (1971), 473–487.MATHMathSciNetGoogle Scholar
  20. 20.
    S. Shelah,Stability and the number of nonisomorphic models, North-Holland, to appear.Google Scholar
  21. 21.
    S. Shelah,Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic37 (1972), 107–113.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Weil,Foundations of Algebraic Geometry, Amer. Math. Soc., 1962.Google Scholar
  23. 23.
    C. Wood,The model theory of differential fields of characteristic p≠0, Proc. Amer. Math. Soc.40 (1973), 577–584.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    C. Wood,Prime model extensions for differential fields of characteristic p≠0, J. Symbolic Logic39 (1974), 469–477.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1976

Authors and Affiliations

  • Carol Wood
    • 1
  1. 1.Wesleyan UniversityMiddletownUSA

Personalised recommendations