Advertisement

Israel Journal of Mathematics

, Volume 23, Issue 2, pp 165–186 | Cite as

Image d’une somme d’operateurs monotones et applications

  • Haïm Brezis
  • Alain Haraux
Article

Abstract

LetA andB be monotone (multivalued) operators in a Hilbert spaceH. The paper deals with the relations between the rangeR(A+B) ofA+B and the algebraic sum of the ranges ofA andB, R(A)+R(B).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Brezis,Opérateurs Maximaux Monotones, Lecture Notes in Mathematics, North-Holland, 1973.Google Scholar
  2. 2.
    H. Brezis, F. Browder,Some new results about Hammerstein equations, Bull. Amer. Math. Soc.80 (1974), 568–572.MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Brezis, F. Browder,Nonlinear integral equations and systems of Hammerstein type, Advances in Math.18 (1975), 115–147.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    F. Browder,Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, inContributions to Nonlinear Functional Analysis, ed. E. Zarantonello, Acad. Press, 1971, pp. 425–500.Google Scholar
  5. 5.
    P. Hess,On nonlinear equations of Hammerstein type in Banach spaces, Proc. Amer. Math. Soc.31 (1971), 308–312.CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Hess,A remark on a class of linear monotone operators, Math. Z.125 (1972), 104–106.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Hess,On semi-coercive nonlinear problems, Indiana Univ. Math. J.23 (1974), 645–654.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. M. Landesman, A. C. Lazer,Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Appl. Math. Mech.19 (1970), 609–623.zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Maury,Un problème de frottement équivalent à un problème de poursuite: étude aymptotique, Séminaire d'analyse convexe, Montpellier, exposé no. 8, 1973.Google Scholar
  10. 10.
    L. Nirenberg,Generalized degree and nonlinear problems, inContributions to Nonlinear Functional Analysis, ed. E. Zarantonello, Acad. Press, 1971, pp. 1–10.Google Scholar
  11. 11.
    M. Schatzman,Problèmes aux limites non linéaires, non coercifs, Ann. Scuola Norm. Sup. Pisa27 (1973), 641–686.MathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1976

Authors and Affiliations

  • Haïm Brezis
    • 1
  • Alain Haraux
    • 1
  1. 1.Université Paris VIParis Cedex 05France

Personalised recommendations