Israel Journal of Mathematics

, Volume 27, Issue 3–4, pp 348–356

Sets of degrees of computable fields

  • Elie Bienenstock
Article

Abstract

Given a Σ2 (resp. Σ1) degree of recursive unsolvability a, a computable field (resp. a computable field with a splitting algorithm)F is constructed in any given characteristic, such that the set of dimensions of all finite extensions ofF has degree a.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ax,The elementary theory of finite fields, Ann. of Math.88 (1968), 239–271.CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Bourbaki,Algèbre, Chapitre V, Actualités Sci. Indust. No. 1102, Hermann, Paris, 1950.MATHGoogle Scholar
  3. 3.
    Ju. L. Ershov,Constructive models, inSelected Questions of Algebra and Logic, Nauka, Novosibirsk, 1973, pp. 111–130 (Russian).Google Scholar
  4. 4.
    Basil Gordon and E. G. Straus,On the degrees of the finite extensions of a field, in Proc. Symp. Pure Math., Vol VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 56–65.Google Scholar
  5. 5.
    M. O. Rabin,Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc.95 (1960), 341–360.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. L. van der Waerden,Modern Algebra, Vol. I, New York, Ungar, 1949.Google Scholar

Copyright information

© Hebrew University 1977

Authors and Affiliations

  • Elie Bienenstock
    • 1
  1. 1.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations