Advertisement

High Temperature

, Volume 38, Issue 2, pp 293–299 | Cite as

Optical quartz glass as a reference substance for the thermal conductivity coefficient of partially transparent materials

  • V. K. Bityukov
  • V. A. Petrov
Review

Abstract

A critical analysis is made of all available literature data on the true (phonon, conductive) coefficient of thermal conductivity of optical quartz glasses which are typical materials partially transparent to thermal radiation. Based on the most reliable of these data, the least squares method is used to derive an equation which approximates the temperature dependence of the thermal conductivity coefficient in the range of 600–1500 K. The possibility of application of optical quartz glass as a reference substance for determining the thermal conductivity coefficient of partially transparent materials under conditions of simultaneous radiative-conductive transfer of energy is substantiated.

Keywords

Optical Constant Quartz Glass Tungsten Wire Contact Thermal Resistance Thermal Conductivity Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GSSSD 26–81. Opticheskie kvartsevye stekla. Opticheskie konstanty i radiatsionnye kharakteristiki pri temperaturakh 295, 473, 673, 873, 1073, 1273, 1473 K. 1. Spektral’nyi diapazon 3.7–11.7 mkm: Tablitsy standartnykh spravochnykh dannykh (GSSSD 26–81. Optical Quartz Glasses. Optical Constants and Radiation Characteristics at Temperatures of 295, 473, 673, 873, 1073, 1273, 1473 K: 1. Spectral Range of 3.7–11.7 μm: Tables of Standard Reference Data), Moscow: Gosstandart. GSSSD, 1982.Google Scholar
  2. 2.
    GSSSD 40–82. Opticheskie kvartsevye stekla. Opticheskie konstanty i radiatsionnye kharakteristiki pri temperaturakh 295, 473, 673, 873, 1073, 1273, 1473 K. 2. Steklo Kl. Opticheskie konstanty i radiatsionnye kharakteristiki v diapazone 2.5–3.6 mkm. Integral’nye radiatsionnye kharakteristiki: Tablitsy standartnykh spravochnykh dannykh (GSSSD 40–82. Optical Quartz Glasses. Optical Constants and Radiation Characteristics at Temperatures of 295, 473, 673, 873, 1073, 1273, 1473 K: 2. KI Glass. Optical Constants and Radiation Characteristics in the Range of 2.5–3.6 μm. Integral Radiation Characteristics: Tables of Standard Reference Data), Moscow: Gosstandart. GSSSD, 1983.Google Scholar
  3. 3.
    GSSSD 60–83. Opticheskie kvartsevye stekla. Opticheskie konstanty i radiatsionnye kharakteristiki pri temperaturakh 295, 473, 673, 873, 1073, 1273, 1473 K. 3. Steklo KU-1. Opticheskie konstanty i radiatsionnye kharakteristiki v diapazonakh 1.23-1.5 i 1.8–3.6 mkm. Integral’nye radiatsionnye kharakteristiki: Tablitsy standartnykh spravochnykh dannykh (GSSSD 60–83. Optical Quartz Glasses. Optical Constants and Radiation Characteristics at Temperatures of 295, 473, 673, 873, 1073, 1273, 1473 K: 3. KU-1 Glass. Optical Constants and Radiation Characteristics in the Ranges of 1.23-1.5 and 1.8–3.6 üm. Integral Radiation Characteristics: Tables of Standard Reference Data), Moscow: Gosstandart. GSSSD, 1985.Google Scholar
  4. 4.
    GSSSD 61–83. Opticheskie kvartsevye stekla. Opticheskie konstanty i radiatsionnye kharakteristiki pri temperaturakh 295, 473, 673, 873, 1073, 1273, 1473 K. 3. Steklo KV. Opticheskie konstanty i radiatsionnye kharakteristiki v diapazonakh 1.23-1.5 i 1.8–3.6 mkm. Integral’nye radiatsionnye kharakteristiki: Tablitsy standartnykh spravochnykh dannykh (GSSSD 61–83. Optical Quartz Glasses. Optical Constants and Radiation Characteristics at Temperatures of 295, 473, 673, 873, 1073, 1273, 1473 K: 3. KV Glass. Optical Constants and Radiation Characteristics in the Ranges of 1.23-1.5 and 1.8–3.6 Jim. Integral Radiation Characteristics: Tables of Standard Reference Data), Moscow: Gosstandart. GSSSD, 1985.Google Scholar
  5. 5.
    Devyatkova, E.D., Petrov, A.v, Smirnov, I.A., and Moizhes, B.Ya.,Fiz. Tverd. Tela, 1960, vol. 11, issue 4, p. 738.Google Scholar
  6. 6.
    Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G.,Thermophysical Properties of Matter, vol. 2:Thermal Conductivity, Nonmetallic Solids, New York: IFI/Plenum, 1970.Google Scholar
  7. 7.
    Sergeev, O.A. and Shashkov, A.G.,Teplofizika opticheskikh sred (Thermophysics of Optical Media), Minsk: Nauka i Tekhnika, 1983, p. 186.Google Scholar
  8. 8.
    Wray, K.L. and Connolly, T.J.,J. Appl. Phys., 1959, vol. 30, no. 11, p. 1702.CrossRefADSGoogle Scholar
  9. 9.
    Sugawara, A.,J. Appl. Phys., 1968, vol. 39, no. 13, p. 5994.CrossRefADSGoogle Scholar
  10. 10.
    Degiovanni, A., Andre, S., and Maillet, D., Phonic Conductivity Measurement of a Semi-Transparent Material,Thermal Conductivity 22, Tong, T.W., Ed., Lancaster-Basel: Technomic, 1994, p. 623.Google Scholar
  11. 11.
    Spirin, G.G., Vinogradov, Yu.K., and Belyaev, O.v,Teplofiz. Vys. Temp., 1996, vol. 34, no. 1, p. 29 (High Temp. (Engl. transi.), vol. 34, no. 1, p. 25).Google Scholar
  12. 12.
    Men’, A.A. and Chechel’nitskii, A.Z.,Teplofiz. Vys. Temp., 1973, vol. 11, no. 6, p. 1309.Google Scholar
  13. 13.
    Sergeev, O.A. and Men’, A.A.,Teplofizicheskie svoistva poluprozrachnykh materialov (The Thermal Properties of Semitransparent Materials), Moscow: Izd. Standartov, 1977.Google Scholar
  14. 14.
    Bityukov, V.K., Petrov, V.A., and Stepanov, S.v,High Temp. High Pressures, 1980, vol. 12, no. 2, p. 229.Google Scholar
  15. 15.
    Bityukov, V.K., Petrov, V.A., and Stepanov, S.v,Teplofiz. Vys. Temp., 1981, vol. 19, no. 3, p. 661.Google Scholar
  16. 16.
    Bityukov, V.K., Latyev, L.N., Petrov, V.A., and Stepanov, S.v,Izv. Sib. Otd. Akad. Nauk SSSR Sen Tekh. Nauk, 1979, no. 13, issue 3, p. 53.Google Scholar
  17. 17.
    Bityukov, V.K., Petrov, V.A., and Stepanov, S.v,Teplofiz. Vys. Temp., 1983, vol. 21, no. 6, p. 1106.Google Scholar
  18. 18.
    Kunc, T., Lallemand, M., and Saulnier, J.B.,Int. J. Heat Mass Transfer, 1984, vol. 27, no. 12, p. 2307.CrossRefGoogle Scholar
  19. 19.
    Kunc, T. and Lallemand, M.,Glastech. Ben, 1985, vol. 58, no. 8, p. 224.Google Scholar
  20. 20.
    Lallemand, M. and Kunc, T.,Glastech. Ber., 1985, vol. 58, no. 9, p. 259.Google Scholar
  21. 21.
    Men’, A.A. and Sergeev, O.A.,Dokl. Akad. Nauk SSSR, 1972, vol. 203, no. 6, p. 1272.Google Scholar
  22. 22.
    Chechel’nitskii, A.Z.,Teplofiz. Vys. Temp., 1972, vol. 10, no. 2, p. 285.Google Scholar
  23. 23.
    Bityukov, V.K., Abstracts of Papers,III Vsesoyuznaya nauchno-tekhnicheskaya konferentsiya “Metrologicheskoe obespechenie temperaturnykh i teplofizicheskikh izmerenii v oblasti vysokikh temperatur (III Int. Conf. onMet- rological Support of Temperature and Thermal Measurements in the High-Temperature Region), Kharkov, 1986, p. 236.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. K. Bityukov
    • 1
  • V. A. Petrov
    • 2
  1. 1.Moscow State Institute of Radio Engineering, Electronics, and Automatics (Technical University)MoscowRussia
  2. 2.IVTAN (Institute of High Temperatures) Scientific AssociationRussian Academy of SciencesMoscowRussia

Personalised recommendations