Il Nuovo Cimento (1955-1965)

, Volume 26, Issue 1, pp 53–62 | Cite as

On Cauchy’s problem in general relativity - II

  • A. Peres


It is always possible to satisfy the three transverse constraints πmn.n= 0 by taking πmn=δS/δg mn , whereS is any functional of theg mn , invariant under co-ordinate transformations. If furthermore S is invariant under scale transformations, we also haveg mn π mn = 0. The explicit construction of initial data for General Eelativity then reduces to the Lichnerowicz scalar equation, and can be achieved with arbitrary accuracy. This method can be considered as a first step towards a Hamilton-Jacobi formalism for the gravitational field.


È sempre possibile soddisfare le tre costrizioni trasversali πmn,n = π prendendo πmn= δS/δgmn, in cui8 è un qualsiasi funzionale delg mn , invariante per trasformazioni di coordinate. Se inoltreS è invariante per trasformazioni di scala, noi abbiamo ancheg mn π mn = 0. La costruzione esplicita dei dati iniziali della relativita generale si riduce allora all’equazione scalare di Lichnerowicz. Questo metodo puo essere considerate un primo passo verso un formalismo di Hamilton-Jacobi per il campo gravitazionale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. A. M. Dirac:Proc. Roy. Soc, A246, 333 (1958).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    A. Peres andN. Rosen:Nuovo Cimento,13, 430 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  3. (3).
    A. Peres:Nuovo Cimento,18, 32 (1960).CrossRefGoogle Scholar
  4. (4).
    Y. Foures-Bruhat:Journ. Rat. Mech. Anal.,5, 591 (1956).MathSciNetGoogle Scholar
  5. (6).
    A. Lichnerowicz:Journ. Math. Pures Appl.,23, 37 (1944).MathSciNetGoogle Scholar
  6. (7).
    A. Peres:Bull. Research Council Israel,8 F, 179 (1960).Google Scholar
  7. (8).
    R. Arnowitt, S. Desee andC. W. Misner:Ann. Phys.,11, 116 (1960).ADSCrossRefGoogle Scholar
  8. (9).
    This observation is due toC. W. Misner.Google Scholar
  9. (10).
    L. Infeld:Bull. Acad. Polon. Sci.,9, 299 (1961).MathSciNetGoogle Scholar
  10. (11).
    J. Plebański:Journ. Math. Phys.,2, 677 (1961).ADSCrossRefzbMATHGoogle Scholar
  11. (12).
    J. L. Anderson: private communication.Google Scholar
  12. (14).
    I. M. Gel’fand andA. M. Yageom:Usp. Mat. Nauk,11, 77 (1956).zbMATHGoogle Scholar
  13. (15).
    L. P. Eisenhart:Riemannian Geometry (Princeton, 1926).Google Scholar

Copyright information

© Società Italiana di Fisica 1962

Authors and Affiliations

  • A. Peres
    • 1
  1. 1.Palmer Physical LaboratoryPrinceton UniversityPrinceton

Personalised recommendations