Differential Equations

, Volume 36, Issue 2, pp 262–271 | Cite as

Absolute continuity of the spectrum of a periodic dirac operator

  • L. I. Danilov
Partial Differential Equations

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Danilov, L.I.,Teoret. i Mat. Fizika, 1995, vol. 103, no. 1, pp. 3–22.MathSciNetGoogle Scholar
  2. 2.
    Gel’fand, I.M.,Dokl. Akad. Nauk SSSR, 1950, vol. 73, no. 6, pp. 1117–1120.MATHGoogle Scholar
  3. 3.
    Reed, M. and Simon, B.,Methods of Modem Mathematical Physics, vol. 4, New York: Academic Press, 1979. Translated under the titleMetody sovremennoi matematicheskoi fiziki, vol. 4, Moscow: Mir, 1982.Google Scholar
  4. 4.
    Reed, M. and Simon, B.,Methods of Modern Mathematical Physics, vol. 1, New York: Academic Press, 1972. Translated under the titleMetody sovremennoi matematicheskoi fiziki, vol. 1, Moscow: Mir, 1977.MATHGoogle Scholar
  5. 5.
    Danilov, L.I.,Spektr operatora Diraka s periodicheskim potentsialom: III (Spectrum of the Dirac Operator with Periodic Potential: III), Moscow, 1992. Deposited in VINITI 10.07.92, no. 2252-V92.Google Scholar
  6. 6.
    Danilov, L.I.,Spektr operatora Diraka s periodicheskim potentsialom: VI (Spectrum of the Dirac Operator with Periodic Potential. IV), Moscow, 1996. Deposited in VINITI 31.12.96, no. 3855-V96.Google Scholar
  7. 7.
    Thomas, L.E.,Commun. Math. Phys., 1973, vol. 33, pp. 335–343.CrossRefGoogle Scholar
  8. 8.
    Rozenblyum, G.V., Solomyak, M.Z., and Shubin, M.A., inItogi Nauki i Tekhniki. Sovremennye Problemy Matematiki. Fundam. Napravleniya (Achievements of Science of Technology. Modern Problems of Mathematics. Basic Directions), Moscow, 1989, vol. 64, pp. 1–242.Google Scholar
  9. 9.
    Birman, M.Sh. and Suslina, T.A.,Algebra i Analiz, 1997, vol. 9, no. 1, pp. 32–48.MathSciNetGoogle Scholar
  10. 10.
    Danilov, L.I.,Teoret. i Mat. Fizika, 1990, vol. 85, no. 1, pp. 41–53.MathSciNetGoogle Scholar
  11. 11.
    Danilov, L.I., O spektre operatora Diraka s periodicheskim potentsialom (Spectrum of the Dirac Operator with Periodic Potential),Preprint IPT UD AS USSR, Sverdlovsk, 1987.Google Scholar
  12. 12.
    Gantmakher, F.R.,Teoriya matrits (Theory of Matrices), Moscow, 1988.Google Scholar
  13. 13.
    Danilov, L.I.,Spektr operatora Diraka s periodicheskim potentsialom: IV (Spectrum of the Dirac Operator with Periodic Potential: IV), Moscow, 1995. Deposited in VINITI 31.01.95, no. 264-V95.Google Scholar
  14. 14.
    Nikol’skii, S.M.,Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya (Approximations to Functions of Several Variables and Embedding Theorems), Moscow, 1969.Google Scholar
  15. 15.
    Danilov, L.I.,Spektr operatora Diraka s periodicheskim potentsialom: V (Spectrum of the Dirac Operator with Periodic Potential: V), Moscow, 1995. Deposited in VINITI 20.12.95, no. 3407-V95.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • L. I. Danilov
    • 1
  1. 1.Institute of Physics and Technology, Ural DivisionRussian Academy of SciencesIzhevskRussia

Personalised recommendations