Lettere al Nuovo Cimento (1971-1985)

, Volume 37, Issue 16, pp 545–555 | Cite as

Lie-isotopic lifting of the special relativity for extended deformable particles

  • R. M. Santilli


We recall the variation of the speed of light with the local physical conditions of the material media in which it propagates, and identify a corresponding class of generalized metrics. The underlying group of isometries is constructed via a Lie-isotopic lifting of the envelope, algebra and group structure of Lorentz transformations. It is shown that the generalized transformations, called Lorentz-isotopic, are apparently capable of characterizing an isotopic lifting of the special relativity for extended, and therefore deformable particles. The current experimental information on the apparent approximate character of the conventional Lorentz transformations in particle physics are reviewed, and a number of direct tests suitable for the resolution of the issue are indicated.


03.30 Special relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (2).
    The early, well-written, treateses on special relativity stressed explicitly its restricted applicability to massive points (see,e.g., the title of Chapt. VI olP. G. Bergmann:Introduction io Special Relativity (Englewood Cliffs, N.J., 1912))Google Scholar
  2. (3).
    E. Fermi:Nuclear Physics (Chicago, I11., 1949), p. 111.Google Scholar
  3. (4).
    R. M. Santilli:Hadronic J.,1, 574 (1978).MathSciNetGoogle Scholar
  4. (5).
    Proceedings of the Second Workshop on Lie-admissible Formulations, Parts A and B,Hadronic J.,3, (1979);Proceedings of the Third Workshop on Lie-admissible Formulations, Parts A, B and C,Hadronic J.,4 (1980); see also theProceedings of the First International Conference on Nonpotential Interactions and Their Lie-admissible treatment, Parts A, B, C and D,Hadronic J.,5 (1982).Google Scholar
  5. (6).
    R. M. Santilli:Foundations of Theoretical Mechanics, Vol. I (Berlin, 1978).Google Scholar
  6. (7).
    R. M. Santilli:Lett. Nuovo Cimento,33, 145 (1982).ADSCrossRefGoogle Scholar
  7. (8).
    V.De Sabbata andM. Gasperini:Lett. Nuovo Cimento,34, 337 (1982).ADSCrossRefGoogle Scholar
  8. (9).
    D. Y. Kim:Hadronic J.,1, 1343 (1978), and quoted papers.Google Scholar
  9. (10).
    H. B. Nielsen andI. Picek:Nucl. Phys. B,211, 269 (1983).ADSCrossRefGoogle Scholar
  10. (11).
    K. Huerta-Quintanilla and J. L. Lucio: Fermilab preprint 83/18-THY (1983).Google Scholar
  11. (12).
    B. Recami andR. Mignani:Lett. Nuovo Cimento,4, 144 (1972). For an updated review, seeG. D. Maccarone and E. Recami: preprint INFN/AE-82/12 (1982), University of Catania, Italy.CrossRefGoogle Scholar
  12. (13).
    G. Yu. Bogoslovsky:Nuovo Cimento B,40, 99, 116 (1977);43, 377 (978).ADSCrossRefGoogle Scholar
  13. (14).
    S. H. Aronson, G. J. Book, H. Y. Cheng andE. Fishback:Phys. Rev. Lett., 48, 1306 (1982).ADSCrossRefGoogle Scholar
  14. (15).
    G. Eder:Hadronic J.,4, 634, 2018 (1981);5, 750 (1982).MathSciNetGoogle Scholar
  15. (16).
    P. K. Phillips:Rev. Sci. Instr.,50, 1018 (1979).ADSCrossRefGoogle Scholar
  16. (17).
    A. Zee:Phys. Rev. D,25, 1864 (1982).ADSCrossRefGoogle Scholar
  17. (18).
    M. Forte, B. R. Heoeel, N. F. Ramsey, K. Geeen, G. L. Green, J. Byene andJ. L. Pendleeury:Phys. Rev. Lett.,45, 2088 (1980).ADSCrossRefGoogle Scholar
  18. (19).
    R. J. Slobodrian, C. Rioxjx, R. Roy, H. E. Conzett, P. von Rossen andF. Interberger:Phys. Rev. Lett.,47, 1803 (1981);C. Rioux, R. Roy, R. J. Slobodrian and H. E. Conzett:Nucl. Phys. A,394 (1983); andR. A. Hardekopf, P. W. Keaton, P. W. Lisowski and L. R. Veseer:Phys. Rev. C,25, 1090 (1982).ADSCrossRefGoogle Scholar
  19. (20).
    See,e.g., theB.C.D.M.S. Collaboration: J.I.N.R. Preprint EI-82-656 (1982), Dubna, U.S.S.R.Google Scholar
  20. (21).
    I. I. Bigi:Z. Phys. C,12, 235 (1982).ADSCrossRefGoogle Scholar
  21. (22).
    H. Rauch:Hadronic J.,5, 729 (1982).Google Scholar
  22. (24).
    Apparently, its first application to Lie’s theory (enveloping algebras, Lie algebras, and Lie groups) was made byR. M. Santilli:Hadronic J.,4, 223 (1978), pp. 287–290 and 329–374, as an intermediary step toward the Lie-admissible generalization of Lie’s theory. A review of the state of the art in 1982 is presented in ref. (25), pp. 148–183. Specific applications to the generalization of pseudo-Euclidean spaces have been presented in ref. (26, 27). Mathematical studies can be found in ref. (5).MathSciNetGoogle Scholar
  23. (25).
    R. M. Santilli:Foundations of Theoretical Mechanics, Vol. II (Berlin, 1982).Google Scholar
  24. (26).
    R. M. Santilu:Lie-isotopic liftings of Lie’s theory. - I:General considerations, I.B.R. preprint DE-83-2 (1983), submitted for publication.Google Scholar
  25. (27).
    R. M. Santilli:Lie-isotopic liftings of Lie’s theory. - II:Lifting of rotations, I.B.R. preprint DE-83-2 (1983), submitted for publication.Google Scholar
  26. (28).
    P. Roman:Theory of Elementary Particles (Amsterdam, 1964).Google Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • R. M. Santilli
    • 1
  1. 1.The Institute for Basic ResearchCambridge

Personalised recommendations