Il Nuovo Cimento (1955-1965)

, Volume 34, Issue 3, pp 655–664 | Cite as

Final-state interactions in η0 → 3π decay

  • S. Oneda
  • Y. S. Kim
  • L. M. Kaplan


It is shown that the ϱ-mesonic final-state interaction could give rise to the observed asymmetries in the η0 → 3π decay. A dynamical model is presented which explains both the branching ratioP0→3π0)/P0→π+)+π-0) and the existence of a large asymmetric component in the (η0→π+)+π-0) decay. The model predicts a relatively small symmetric constant amplitude. It is shown that, in this model, the symmetric constant amplitude vanishes in the limit of the exact 8U3 symmetry and of a constant η-π coupling. A similar discussion is given for the K → 3π decay. Possible effects of the σ0 dipion are also discussed.


Si dimostra che l’interazione dello state finale p-mesonico può dar luogo alle simmetrie osservate nel decadimento η0 → 3π. Si presenta un modello dinamico che spiega sia il rapporte di suddivisioneP0→3π0)/P0→π+)+π-0) e l’esistenza di una grande componente asimmetrica nel decadimento (η0→π+)+π-0) Il modello predice un’ampiezza costante simmetrica relativamente piccola. Si dimostra che, in questo modello, l’ampiezza costante simmetrica tende a zero al limite dell’esatta simmetriaSU3 e di un coatante accoppiamento η-π. Si esprme una simile disenssione per il decadimento K-3πT. Si discutono anche i possibili effetti del.dipione σ0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. Berley, D. Colley andJ. Schultz:Phys. Rev. Lett.,10, 114 (1963). Earlier data are cited here.ADSCrossRefGoogle Scholar
  2. (2).
    G. Barton andS. P. Rosen:Phys. Rev. Lett.,8, 414 (1962);M. A. B. Beg:Phys. Rev. Lett.,9, 67 (1962);K. C. Wali:Phys. Rev. Lett.,9, 120 (1962);C. Kacser:Phys. Rev.,130, 355 (1963).ADSCrossRefGoogle Scholar
  3. (3).
    P. C. Crawford jr.,J. Lloyd andF. C. Fowler:Phys. Rev. Lett.,10, 546 (1963);F. S. Crawford, jr., R. A. Grossman, L. J. Lloyd, L. R. Price andE. C. Fowler:Phys. Rev. Lett.,11, 564 (1963);E. C. Fowler, F. S. Crawford, jr., L. J. Lloyd, R. A. Grossman andL. Price:Phys. Rev. Lett.,10, 110 (1963.ADSCrossRefGoogle Scholar
  4. (4).
    L. M. Brown andP. Singer:Phys. Rev. Lett.,8, 460 (1962); andPhys. Rev.,133, B 812 (1964).ADSCrossRefGoogle Scholar
  5. (5).
    For instance,N. P. Samios, A. H. Bachman, R. M. Lea, T. E. Kalogeropoulos andW. D. Shephard:Phys. Rev. Lett.,9, 139 (1962);J. Kirz, J. Schwartz andR. D. Tripp:Phys. Rev.,130, 2481 (1963).ADSCrossRefGoogle Scholar
  6. (6).
    C. Alff, D. Berley, D. Colley, N. Gel’fand, U. Nauenberg, D. Miller, J. Schultz, J. Steinberger, T. H. Tan, H. Brugger, P, Kramer andR. Plano:Phys. Rev. Lett.,9, 322 (1962).ADSCrossRefGoogle Scholar
  7. (7).
    See, for instance,S. Okubo andB. Sakita:Phys. Rev. Lett.,11, 50 (1963); Riazuddin and-Fayyazuddin:Phys. Rev.,123, 2337 (1963).ADSCrossRefGoogle Scholar
  8. (8).
    S. Hori, S. Oneda, S. Chiba andA. Wakasa:Phys. Lett.,5, 339 (1963).ADSCrossRefGoogle Scholar
  9. (9).
    See, however,B. Barret andG. Barton:Phys. Rev.,133, B 466 (1964);E. Eborlo andS. Iwao: preprint.ADSCrossRefGoogle Scholar
  10. (10).
    G. Von Dardel, D. Dakkers, R. Mermod, J. D. van Putten, M. Vivargent, G. Weber andK. Winter:Phys. Lett.,4, 51 (1963). Earlier experiments gave values about twice larger:R. G. Glasser, N. Seeman andB. Stiller:Phys. Rev.,123, 1014 (1961);R. F. Blackie, A. E. Engler andJ. H. Mulvey:Phys. Rev. Lett.,5, 384 (1960).ADSCrossRefGoogle Scholar
  11. (11).
    S. Oneda andY. S. Kim: University of Maryland Technical Report no. 357.Google Scholar
  12. (12).
    S. Oneda andJ. C. Pati: unpublished.Google Scholar

Copyright information

© Società Italiana di Fisica 1964

Authors and Affiliations

  • S. Oneda
    • 1
  • Y. S. Kim
    • 1
  • L. M. Kaplan
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege Park

Personalised recommendations