Skip to main content
Log in

Neutron-proton interactions in the energy range (290 ÷ 970) MeV

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

A study of inelastic n-p interactions has been made using the Birmingham 1 GeV synchrotron and a 9 in. diameter liquid hydrogen bubble chamber. 1840 three-pronged events initiated by neutrons in the energy range (290 ÷ 970) MeV have been analysed, the possible reactions being: n + p → p + p + π; n + p → n + p + π0, π0 → e+ + e- + γ, and n + p → n + p + π+ + π. The ratio found for the integrated cross-sections σ(n + p → n + p + π0) /σ (n + p → p + p + ρ-) = 2.67 ± 0.43 is shown to resolve a long-standing conflict with charge independence. The energy-dependence of the n + p → p + p + π cross-section has been inferred from the expected shape of the incident neutron spectrum with the aid of earlier cross-section measurements in the energy range. The laboratory kinetic energy distributions and centre-of-mass angular distributions for protons from ppπ- events suggest that the peripheral mechanism of interaction is important at lower energies and to a greater extent than indicated by the one-pion-exchange model. However the Treiman-Yang test for this model is satisfied for events involving small momentum transfer and (3, 3) isobar production. The cross-section for the reaction n + p → n + p + π+ + π- increases more quickly above threshold than required by the statistical model of Cerulus and Hagedorn, and much more so than required by one-pion-exchange processes. Comparison with p-p scattering results, in which double-pion production is far smaller, emphasizes the importance of theT=0 channel.

Riassunto

Si è eseguito uno studio delle interazioni n-p anelastiche a mezzo del sincrotrone di 1 GeV di Birmingham e di una camera a bolle ad idrogeno liquido di 9 in. Si sono analizzati 1840 eventi a 3 rami iniziati da neutroni nell’intervallo di energia (290 ÷ 970) MeV; le reazioni possibili erano: n + p → p + p + π-; n + p → n + p + π0, π0 → e+ + e + γ; n + p → n + p + π+ + π-. Si mostra che il rapporto trovato per le sezioni d’urto integrate σ(n + p → n + p + π0)/σ(n + p → p + p + π-) = 2.67 ± 0.43 risolve un eonflitto di vecchia data oon l’indipendenza délia carioa. Con l’aiuto di preoedenti misure délia sezione d’urto di questo intervallo di energia, dalla forma prevista dello spettro dei neutroni incidenti si É dedotta la dipendenza dell’energia délia sezione d’urto n + p-*-p+p + 7i~. Le distribuzioni dell’energia cinetica nel sistema del laboratorio e le distribuzioni angolari nel sistema del centro di massa dei protoni prodotti negli eventi ppπ- suggeriscono che il meccanismo di interazione periferico è importante alle energie più basse ed in misura maggiore di quanto è indieato dal modello con scambio di un pione. Tuttavia il criterio di Treiman-Yang per questo modello è soddisfatto per eventi ehe interessano un piccolo momento trasferito e la produzione di isobari (3, 3). La sezione d’urto della reazione n + p → n + p + π+ + π- cresce più rapidamente sopra la soglia di quanto è richiesto dal modello statistico di Cerulus e Hagedorn, ed ancor più di quanto richiesto da processi con scambio di un pione. Il confronto con i risultati dello scattering p-p, in oui la produzione di due pioni è molto inferiore, mette in rilievo l’importanza del canale T=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Bugg, A. J. Oxley, J. A. Zoll, J. G. Rushbrooke, V. E. Barnes, J. B. Kinson, W. P. Dodd, G. A. Doran andL. Riddiford:Phys. Rev.,133 B, 1017 (1964).

    Article  ADS  Google Scholar 

  2. W. J. Fickinger, E. Pickup, D. K. Robinson andE. O. Salant:Phys. Rev.,125, 2082 (1962).

    Article  ADS  Google Scholar 

  3. G. A. Smith, H. Courant, E. C. Fowler, H. Kraybill, J. Sandweiss andH. Taft:Phys. Rev.,123, 2160 (1961);E. L. Hart, R. I. Louttit, D. Luers, T. W. Morris, W. J. Willis andS. S. Yamamoto:Phys. Rev.,126, 747 (1962).

    Article  ADS  Google Scholar 

  4. A. P. Batson, B. B. Culwick, H. B. Klepp andL. Riddiford:Proc. Roy. Soc. (London), A251, 233 (1959).

    Article  ADS  Google Scholar 

  5. W. A. Wallenmeyer:Phys. Rev.,105, 1058 (1957).

    Article  ADS  Google Scholar 

  6. W. B. Fowler, R. P. Shutt, A. M. Thorndike andW. L. Whittemore:Phys. Rev.,95, 1026 (1954).

    Article  ADS  Google Scholar 

  7. F. N. Holmquist: UCRL 8559 (1958).

  8. G. B. Yodh:Phys. Rev.,98, 1331 (1955);

    Article  ADS  Google Scholar 

  9. V. Dzhelepov, K. Oganesyan andV. Fliagin:Soviet Phys. JETP,2, 757 (1956);

    Google Scholar 

  10. Y. M. Kazarinov, Y. N. Simonov:Soviet Phys., JETP,8, 56 (1959);

    Google Scholar 

  11. A. F. Dunaitsev andY. D. Prokoshkin:Soviet Phys. JETP,11, 540 (1960), where a comprehensive review is given of single-pion production, including an extensive list of references.

    Google Scholar 

  12. J. G. Rushbrooke:Ph. D. Thesis, University of Cambridge (1962).

  13. M. Jobes:Ph. D. Thesis, University of Birmingham (1964).

  14. V. Kiselev, K. Oganesyan, R. Poze andV. Fliagin:Soviet Phys. JETP,8, 564 (1958). Further details of neutron spectra from proton-nucleus collisions may be found inB. Nelson, G. Guernsey andG. Mott:Phys. Rev.,88, 1 (1952);J. de Pangher:Phys. Rev.,99, 1447 (1955);A. J. Hartzler andR. Siegel:Phys. Rev.,95, 181, 591 (1954).

    Google Scholar 

  15. Y. D. Prokoshkin andA. A. Tyapkin:Soviet Phys. JETP,5, 618 (1957);

    Google Scholar 

  16. B. S. Neganov andO. Savchenko:Soviet Phys. JETP,5, 1033 (1957);

    Google Scholar 

  17. A. Mesh-kowskii, I. Shalamov andV. Shebanov:Soviet Phys. JETP,8, 46 (1959);

    Google Scholar 

  18. T. H. Fields, J. C. Fox, J. A. Kane, R. A. Stallwood andR. B. Sutton:Phys. Rev.,109, 1713, 1716 (1958);

    Article  ADS  Google Scholar 

  19. G. D. Mead: UCRL 10187 (1962).

  20. S. Mandelstam:Proe. Roy. Soc. (London), A244, 491 (1958).

    Article  ADS  Google Scholar 

  21. A. H. Rosenfeld:Phys. Rev.,96, 139 (1954).

    Article  ADS  Google Scholar 

  22. R. R. Larsen: UCRL 9292 (1960).

  23. H. Palevsky, J. A. Moore, R. L. Steavens, H. R. Muether, R. J. Sutter, R. E. Chrien, A. P. Jain andK. Otnes:Phys. Rev. Lett.,9, 509 (1962).

    Article  ADS  Google Scholar 

  24. W. P. Dodd:Ph. D. Thesis, University of Birmingham (1963).

  25. S. J. Lindenbaum andK. M. Sternheimer:Phys. Rev.,105, 1874 (1957);

    Article  ADS  Google Scholar 

  26. R. M. Sternheimer andS. J. Lindenbaum:Phys. Rev.,123, 333 (1961).

    Article  ADS  Google Scholar 

  27. F. F. Chen, C. P. Leavitt andA. M. Shapiro:Phys. Rev.,103, 211 (1956).

    Article  ADS  Google Scholar 

  28. F. Cerulus andR. Hagedorn:Nuovo Cimento,9, 646 (1958).

    Article  MathSciNet  Google Scholar 

  29. R. Hagedorn:Nuovo Cimento,25, 1017 (1963).

    Article  Google Scholar 

  30. D. W. Joseph:Nuovo Cimento,16, 997 (1960).

    Article  Google Scholar 

  31. E. Ferrari andF. Selleri:Suppl. Nuovo Cimento,24, 453 (1962).

    Article  Google Scholar 

  32. E. Ferrari andF. Selleri:Nuovo Cimento,27, 1450 (1963).

    Article  Google Scholar 

  33. V. E. Barnes, D. V. Bugg, W. P. Dodd, J. B. Kinson andL. Riddiford:Phys. Rev. Lett.,7, 288 (1961).

    Article  ADS  Google Scholar 

  34. S. B. Treiman andC. N. Yang:Phys. Rev. Lett,8, 140 (1962).

    Article  ADS  Google Scholar 

  35. E. Ferrari:Phys. Lett.,2, 66 (1962).

    Article  ADS  Google Scholar 

  36. G. Morpurgo:Nuovo Cimento,4, 1222 (1956);5, 1787 (1957).

    Article  Google Scholar 

  37. P. Eberhard andM. L. Good:Phys. Rev.,120, 1442 (1960).

    Article  ADS  Google Scholar 

  38. M. Peshkin:Phys. Rev.,123, 637 (1961).

    Article  ADS  Google Scholar 

  39. R. K. Adair:Phys. Rev.,100, 1540 (1955).

    Article  ADS  Google Scholar 

  40. M. Derrick, J. C. Fetkovich, T. H. Fields andJ. Deahl:Phys. Rev.,120, 1022 (1960).

    Article  ADS  Google Scholar 

  41. N. P. Samios:Phys. Rev.,121, 275 (1961).

    Article  ADS  Google Scholar 

  42. N. P. Samios, R. Plano, A. Prodell, M. Schwarz andJ. Steinberger:Phys. Rev.,126, 1884 (1962).

    Article  ADS  Google Scholar 

  43. N. M. Kroll andW. Wada:Phys. Rev.,98, 1355 (1955).

    Article  ADS  Google Scholar 

  44. E. Ferrari: CERN Int. Rep. 6078/TH 328 (1963).

  45. C. Baltay,et al.: Interactions of High-Energy Anti-protons in Hydrogen, paper submitted to theStanford Nucleon Structure Meeting (June 24–27, 1963).

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave at Saclay, Gif sur Yvette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushbrooke, J.G., Bugg, D.V., Oxley, A.J. et al. Neutron-proton interactions in the energy range (290 ÷ 970) MeV. Nuovo Cim 33, 1509–1537 (1964). https://doi.org/10.1007/BF02749671

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02749671

Navigation