Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 7, pp 841–854 | Cite as

Hamilton-Jacobi formulation for singular systems with second-order Lagrangians

  • B. M. Pimentel
  • R. G. Teixeira
Article

Summary

Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac’s method.

PACS

04.20.Fy Canonical formalism Lagrangians and variational principles 

PACS

11.10.Ef Lagrangian and Hamiltonian approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stelle K. S.,Phys. Rev. D,16 (1977) 953;West P.,Nucl. Phys. B,268 (1986) 113.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Alekseev A. I., Arbuzov B. A. andBaikov V. A.,Theor. Math. Phys. (English translation),52 (1982) 739;59 (1983) 372.CrossRefGoogle Scholar
  3. [3]
    Sundermeyer K.,Lecture Notes Phys., Vol.169 (1982).Google Scholar
  4. [4]
    Sudarshan E. C. G. andMukunda N.,Classical Dynamics: A Modem Perspective (John Wiley & Sons Inc., New York, N.Y.) 1974.Google Scholar
  5. [5]
    Dirac P. A. M.,Can. J. Math.,2 (1950) 129.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Dirac P. A. M.,Can. J. Math.,3 (1951) 1.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Dirac P. A. M.,Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, N.Y.) 1964.Google Scholar
  8. [8]
    Güler Y.,Nuovo Cimento B,107 (1992) 1389.ADSCrossRefGoogle Scholar
  9. [9]
    Güler Y.,Nuovo Cimento B,107 (1992) 1143.ADSCrossRefGoogle Scholar
  10. [10]
    Ostrogradski M.,Mem. Acad. St. Petersbourg,1 (1850) 385.Google Scholar
  11. [11]
    Gitman D. M. andTyutin I. V.,Quantization of Fields with Constraints (Springer-Verlag) 1990.Google Scholar
  12. [12]
    Galvāo C. A. P. andPimentel B. M.,Can. J. Phys.,66 (1988) 460.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • B. M. Pimentel
    • 1
  • R. G. Teixeira
    • 1
  1. 1.Institute de Física TeóricaUniversidade Estadual PaulistaSÃo Paulo, S.P.Brazil

Personalised recommendations