Bulletin of Materials Science

, Volume 10, Issue 1–2, pp 45–51 | Cite as

Topological defects in crystals: A density-wave theory

  • M Raj Lakshmi
  • H R Krishna-Murthy
  • T V Ramakrishnan
Proceedings Of The Discussion Meeting On Physics Of Defects


A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {b} = (a/2, a/2,a/2 )\) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.


Dislocations core energy and structure topological defects in crystals density wave theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Christian J W 1983Metall. Trans. A14 123Google Scholar
  2. Duesbery M S 1986Contemp. Phys. 27 145CrossRefGoogle Scholar
  3. Fetter A L and Hohenberg P C 1969Superconductivity (ed.) R D Parks (New York: M. Dekker), Vol. 2Google Scholar
  4. Haymet A D J 1987Ann. Rev. Phys. Chem. (submitted).Google Scholar
  5. Haymet A D J and Oxtoby D W 1982J. Chem. Phys. 74 2559CrossRefGoogle Scholar
  6. Landau L and Lifshitz L D 1970Theory of elasticity 2nd ed. (Oxford: Pergamon).Google Scholar
  7. Oxtoby D W and Haymet A D J 1982J. Chem. Phys. 76 6262CrossRefGoogle Scholar
  8. Puls M P 1981 inProc. Int. Conf. on Dislocation Modelling of Physical Systems (Oxford: Pergamon) p. 249Google Scholar
  9. Raj Lakshmi M, Krishnamurthy H R and Ramakrishnan T V 1987Phys. Rev. B (submitted).Google Scholar
  10. Ramakrishnan T V 1984Pramana — J. Phys. 22 365Google Scholar
  11. Ramakrisnan T V and Yussouff M 1979Phys. Rev. B19 2775Google Scholar
  12. Vitek V, Perrin R C and Bowen D K 1970Philos. Mag. 21 1049CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • M Raj Lakshmi
    • 1
  • H R Krishna-Murthy
    • 1
  • T V Ramakrishnan
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations