Bulletin of Materials Science

, Volume 12, Issue 3–4, pp 325–340 | Cite as

Physical metallurgy of aluminum-lithium alloys

  • G J Kulkarni
  • D Banerjee
  • T R Ramachandran
International Conference On Recent Advances In Materials And Processes


The addition of lithium to aluminium reduces the density and increases the elastic modulus; precipitation of the metastableδ′(Al3Li) phase from supersaturated Al-Li solid solution leads to appreciable increase in strength. The enhanced values for specific modulus and specific strength favour the use of the Al-Li alloys as structural materials for aerospace applications. However the binary alloys suffer from problems of poor ductility and toughness associated with strain localisation (resulting from the ease with whichδ′ particles are sheared during deformation), the presence ofδ′-free zones near grain boundaries and the heterogeneous nucleation of the equilibriumδ phase on the grain boundaries. These problems have been overcome by the development of ternary and quaternary alloys containing copper and magnesium. A small amount (∼0·1%) of zirconium is added to these alloys to improve the recrystallisation characteristics. The properties of alloys developed for commercial exploitation are briefly discussed. An overview of the physical metallurgy of the Al-Li alloys is presented with emphasis on the following features: (i) phase equilibria and precipitation reactions in Al-Li, Al-Cu-Mg, Al-Cu-Li and Al-Mg-Li systems and extension of these results to Al-Li-Cu-Mg alloys, (ii) insoluble particles and their effect on precipitation in the alloys, (iii) microstructural studies on Al-2·3%Li-1·2%Cu-0·7%Mg-0·12%Zr alloy, (iv) lithium depletion during solution treatment, (v) coarsening ofδ′ particles and development of precipitate-free zones near grain boundaries and (vi) microanalysis of the lithium containing phases.


Aluminium-lithium alloys phase equilibria microstructure solute depletion coarsening PFZ microanalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aluminium-lithium alloys III, (eds) Baker C, Gregson P J, Harris S J and Peel C 1986 The Institute of Metals, LondonGoogle Scholar
  2. Aluminum-lithium alloys (eds) Sanders T H and Starke E A 1981 TMS-AIME Warrendale, PAGoogle Scholar
  3. Aluminum-lithium alloys II, (eds) Sanders T H and Starke E A 1984-AIME, Warrendale, PAGoogle Scholar
  4. Abd El-Salam F, Eatah A I and Tawfik A 1983Phys. Status Solidi (a)75 379CrossRefGoogle Scholar
  5. Ahmad M 1987Metall. Trans. A18 635Google Scholar
  6. Ahmad M and Ericsson T 1985Scr. Metall. 19 457CrossRefGoogle Scholar
  7. Ahmad M and Ericsson T 1986Aluminum-lithium alloys III p. 509Google Scholar
  8. Ardell A J 1972Acta Metall 20 61CrossRefGoogle Scholar
  9. Ball M D and Lloyd D J 1985Scr. Metall. 19 1065CrossRefGoogle Scholar
  10. Ball M D and Lagacé H 1986Aluminium-lithium alloys III p 555Google Scholar
  11. Balmuth E S and Schmidt R 1981Aluminum-lithium alloys p 69Google Scholar
  12. Bartges C, Tosten M H, Howell P R and Ryba E R 1987J. Mater. Sci. 22 1663CrossRefGoogle Scholar
  13. Baumann S F and Williams D B 1984Aluminum-lithium alloys II p 17Google Scholar
  14. Bretz P E and Sawtell R R 1986Aluminium-lithium alloys III p 47Google Scholar
  15. Ceresara S, Giarda A and Sanchez A 1977Philos. Mag. 35 97CrossRefGoogle Scholar
  16. Champier G and Samuel F H 1986Aluminium-lithium alloys III p 131Google Scholar
  17. Chan H M and Williams D B 1985Philos. Mag. B52 1019Google Scholar
  18. Cocco G, Fagherazzi C and Schiffini L 1977J. Appl. Cryst. 10 325CrossRefGoogle Scholar
  19. Costas L P and Marshall R P 1962Trans. AIME 224 970Google Scholar
  20. Crooks R E and Starke E A 1984Metall. Trans. 15A 1367Google Scholar
  21. de Jong H 1984Aluminium 60 E587Google Scholar
  22. Dinsdale K, Harris S J and Noble B 1981Aluminum-lithium alloys p 101Google Scholar
  23. Field D J, Scamans G M and Butler E P 1984Aluminum-lithium alloys II p 657Google Scholar
  24. Flower H M and Gregson P J 1987Mater. Sci. Technol. 3 81Google Scholar
  25. Flower H M, Gregson P J, Tite C N J and Mukhopadhyaya A K 1986Aluminum alloys: Their physical and mechanical properties (eds) Starke E A and Sanders T H, (Warley: Engineering Materials Advisory Service), Vol 2Google Scholar
  26. Fox S, Flower H M and McDarmaid D S 1986aScr. Metall. 20 1986CrossRefGoogle Scholar
  27. Fox S, Flower H M and McDarmaid D S 1986bAluminium-lithium alloys III p 263Google Scholar
  28. Gayle F W, Levoy N F and VanderSande J B 1987J. Met. 39(5) 33Google Scholar
  29. Gregson P J and Flower H M 1986Aluminium technology ’86 (ed.) T Sheppard (London: Institute of Metals) p 423Google Scholar
  30. Gregson P J, Flower H M, Tite C N J and Mukhopadhyay A K 1986Mater. Sci. Technol. 2 349Google Scholar
  31. Hardy H K and Silcock J M 1955–56J. Inst. Met. 84 423Google Scholar
  32. Harris S J, Noble B and Dinsdale K 1984Aluminum-lithium alloys II p 219Google Scholar
  33. Hono K, Abe T, Hess D R, Pickering H W, Howell P R, Hasegawa Y, Sakurai T, Sano N and Hirano K 1986Aluminum alloys: Their physical and mechanical properties, p 621Google Scholar
  34. Huang J C and Ardell A J 1986Aluminium-lithium alloys III p 455Google Scholar
  35. Jensrud O and Ryum N 1984Mater. Sci. Eng. 64 229CrossRefGoogle Scholar
  36. Jha S C, Sanders T H and Dayananda M 1987Acta Metall. 35 473CrossRefGoogle Scholar
  37. Kulwicki J H and Sanders T H 1984Aluminum-lithium alloys II p 31Google Scholar
  38. Lavernia E J and Grant N J 1987J. Mater. Sci. 22 1521CrossRefGoogle Scholar
  39. Lifshitz I M and Slyozov V V 1959Soviet Physics JETP,35(8) 331Google Scholar
  40. Lifshitz I M and Slyozov V V 1961J. Phys. Chem. Solids 19 35CrossRefGoogle Scholar
  41. Loisseau A and Lapasset G 1986J. Phys. (Paris) 47 C3–331CrossRefGoogle Scholar
  42. Mahalingam K, Gu B P, Liedl G L and Sanders T H 1987Acta Metall. 35 483CrossRefGoogle Scholar
  43. Malis T 1986Aluminium-lithium alloys III p 347Google Scholar
  44. Meyer P and Dubost B 1986Aluminium-lithium alloys III p 37Google Scholar
  45. Noble B, McLaughlin I R and Thompson G 1970Acta Metall. 18 339CrossRefGoogle Scholar
  46. Noble B and Thompson G E 1971Met. Sci. J. 5 114CrossRefGoogle Scholar
  47. Nozato R and Nakai G R 1977Trans. Jpn. Inst. Metals 18 678Google Scholar
  48. Papazian J M, Schulte R L and Adler P N 1986)Metall. Trans. A17 635Google Scholar
  49. Peel C J, Evans B and McDarmaid D 1986Aluminium-lithium alloys III p 26Google Scholar
  50. Quist W E, Narayanan G H and Wingert A L 1984Aluminium-lithium alloys II p 313Google Scholar
  51. Rioja R A and Ludwiczak E A 1986Aluminium-lithium alloys III p 471Google Scholar
  52. Sainfort P and Guyot P 1985Philos. Mag. A51 575Google Scholar
  53. Sainfort P and Guyot P 1986Aluminium-lithium alloys III p 420Google Scholar
  54. Sakurai T, Kobayashi A, Hasegawa Y, Sakai A and Pickering H W 1986Scr. Metall. 20 1131CrossRefGoogle Scholar
  55. Sanders T H, Ludwiczak E A and Sawtell R R 1980Mater. Sci. Eng. 43 247CrossRefGoogle Scholar
  56. Sanders T H and Starke E A 1984Aluminum-lithium alloys II p 1Google Scholar
  57. Sankaran K K and Grant N J 1981Aluminum-lithium alloys p 205Google Scholar
  58. Schurman and Geissler I K 1980Giessereiforschung 32 163Google Scholar
  59. Sigli C and Sanchez J M 1986Acta Metall. 34 1021CrossRefGoogle Scholar
  60. Silcock J M, Heal T J and Hardy H K 1955–56J. Inst. Met. 84 23Google Scholar
  61. Silcock J M 1959–60J. Inst. Met. 88 357Google Scholar
  62. Silcock J M 1960–61J. Inst. Met. 89 203Google Scholar
  63. Spooner S, Williams D B and Sung C M 1986Aluminium-lithium alloys III p 329Google Scholar
  64. Starke E A, Sanders T H and Palmer I G 1981J. Met. 33(8) 24Google Scholar
  65. Sung C M, Chan H M and Williams D B 1986Aluminium-lithium alloys III p 337Google Scholar
  66. Suzuki H, Kanno M and Hayashi N 1982J. Jpn. Inst. Light Met. 32 88Google Scholar
  67. Turkdogan T 1980Phys. Chem. High Temp. Technology (New York, London: Academic Press)Google Scholar
  68. van Heimendahl M and Puppel D 1982Micron 13 1Google Scholar
  69. Vasudevan A K, Ludwiczak E A, Baumann S F, Doherty R D and Kersker M M 1985Mater. Sci. Eng. 72 125CrossRefGoogle Scholar
  70. Vasudevan A K and Doherty R D 1987Acta Metall. 35 1193CrossRefGoogle Scholar
  71. Wagner C 1961Z. Electrochem. 65 581Google Scholar
  72. Welpmann K, Peters M and Sanders T H 1984Aluminium 60 E641Google Scholar
  73. Welpmann K, Peters M and Sanders T H 1986Aluminium-lithium alloys III p 524Google Scholar
  74. Wert J A and Ward A B 1985Scr. Metall. 19 367CrossRefGoogle Scholar
  75. White J, Miller W S, Palmer I G, Davis R and Saini T S 1986Aluminium-lithium alloys III p 530Google Scholar
  76. Williams D B and Edington J W 1974Philos. Mag. 30 1147CrossRefGoogle Scholar
  77. Williams D B and Edington J W 1975Met. Sci. J. 9 529CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • G J Kulkarni
    • 1
  • D Banerjee
    • 1
    • 2
  • T R Ramachandran
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Defence Metallurgical Research LaboratoryPO KanchanbaghHyderabadIndia

Personalised recommendations