Il Nuovo Cimento (1955-1965)

, Volume 24, Issue 2, pp 214–236

On structure of the algebra of field operators

  • H. -J. Borchers


Fields describable by Wightman-functions are investigated. It will be shown that for irreducible fields the lowest energy state is not degenerated. A necessary and sufficient condition for the irreducibility of the field, in terms of Wightman-functions, will be derived. For reducible fields it will be shown that the algebra of all operators commuting with the field is an abelian algebra and that its elements commute also with the representation of the inhomogeneous Lorentz-group.


Si studiano i campi, che possono essere descritti con funzioni di Wightmann. è stato dimostrato che nei campi irriducibili lo stato di energia minima non è degenerate In termini delle funzioni di Wightmann, si è dedotta una condizione necessaria e sufficiente per la irriducibilità del campo. Per i campi riducibili si è dimostrato che l’algebra di tutti gli operatori che commutano col campo, è un’algebra abeliana e che i suoi elementi commutano anche con la rappresentazione del gruppo di Lorentz non omogeneo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. S. Wightman:Phys. Rev.,101, 860 (1956).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    W. Schmidt andK. Baumann:Nuovo Cimento,4, 860 (1956).MathSciNetCrossRefGoogle Scholar
  3. (3).
    E. P. Wigner:Ann. Math.,40, 149 (1939); V. Bargmann:Ann. Math.,48, 568 (1947).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    K. Hepp, R. Jost, D. Ruelle andO. Steinmann:Helv. Phys. Acta,34, 542 (1961).Google Scholar
  5. (5).
    L. Schwartz:Théorie des Distributions, 2nd ed. Vol. II, p. 89–93.Google Scholar
  6. (11).
    L. Schwartz: l.c., Vol. 1, p. 108.Google Scholar
  7. (12).
    H. Reeh andS. Schlieder:Bemerkungen zur UnitÄrÄquivalenz Lorentzinvarianter Felder, preprint (1961).Google Scholar
  8. (13).
    R. F. Streater:Analytic Properties of Products of Field Operators, in press.Google Scholar
  9. (15).
    H. J. Bremermann, R. Oehme andJ. G. Taylor:Phys. Rev.,109, 2178 (1958).ADSMathSciNetCrossRefGoogle Scholar
  10. (16).
    E. C. Titchmarsh:The Theory of Functions, 2nd ed., p. 180.Google Scholar
  11. (17).
    L. Schwartz: l.c., Vol.1, p. 73, Theorem IX.Google Scholar
  12. (18).
    L. Schwartz: 1. c, Vol.1, p. 86, Theorem XXII.Google Scholar
  13. (19).
    L. Schwartz: l.c., Vol.2, p. 56.Google Scholar
  14. (20).
    L. Schwartz:Medd. Lunds Univ. Mat. Seminar, Suppl. Band (1952).Google Scholar
  15. (21).
    H. J. Borchers:Nuovo Cimento,15, 784 (1960).MathSciNetCrossRefGoogle Scholar
  16. (22).
    R. Jost:Helv. Phys. Acta,30, 409 (1957).MathSciNetGoogle Scholar
  17. (23).
    M. A. Neumark:Normierte Algebren, Section17. Google Scholar
  18. (24).
    N. I. Achieser andI. M. Glasmann :Theorie der linearen Operatoren im Hilbert-Raum, Section45. Google Scholar
  19. (25).
    N. I. Achieser andI. M. Glasmann: 1. c, Section24. Google Scholar
  20. (26).
    L. Schwartz: l.c., Vol.2, p. 89–93.Google Scholar
  21. (27).
    J. J. Dieudonné andL. Schwartz:Ann. Inst. Fourier, Grenoble,1, 61–101 (1950).CrossRefGoogle Scholar
  22. (28).
    L. Schwartz: l.c., Vol.2, p. 91.Google Scholar
  23. (29).
    L. Schwartz: l.c., Vol.2, p. 93–99.Google Scholar
  24. (30).
    L. Schwartz: l.c., Vol.2, p. 91 and Vol.1, p. 71, Theorem V.Google Scholar
  25. (31).
    L. Schwartz: l.c., Vol.2, p. 91 and p. 94.Google Scholar
  26. (32).
    G. W. Macket:Trans. Amer. Math. Soc.,57, 156–207 (1945) seep. 198; R. Arens:Duke Math. Journ.,14, 787 (1947).Google Scholar
  27. (33).
    Seef.i. Dunford-Schwartz:Linear Operators, part I, II, 1.5.Google Scholar

Copyright information

© Società Italiana di Fisica 1962

Authors and Affiliations

  • H. -J. Borchers
    • 1
  1. 1.Institute for Advanced StudyPrinceton

Personalised recommendations