Bulletin of Materials Science

, Volume 16, Issue 1, pp 1–17 | Cite as

Mechanical alloying—a novel synthesis route for amorphous phases

  • B S Murty


Mechanical alloying (MA) pioneered by Benjamin is a technique for the extension of solid solubility in systems where the equilibrium solid solubility is limited. This technique has, in recent years, emerged as a novel alternate route for rapid solidification processing (RSP) for the production of metastable crystalline, quasicrystalline, amorphous phases and nanocrystalline materials. The glass-forming composition range (GFR), in general, is found to be much wider in case of MA in comparison with RSP. The amorphous powders produced by MA can be compacted to bulk shapes and sizes and can be used as precursors to obtain high strength materials. This paper reports the work done on solid state amorphization by MA in Ti-Ni-Cu and Al-Ti systems where a wide GFR has been obtained. Al-Ti is a classic case where no glass formation has been observed by RSP, while a GFR of 25–90 at.% Ti has been obtained in this system, thus demonstrating the superiority of MA over RSP. The free energy calculations made to explain GFR are also presented.


Mechanical alloying solid state amorphization glass forming composition range free energy-composition diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atzmon M, Unruh K M and Johnson W L 1985J. Appl. Phys. 58 3865CrossRefGoogle Scholar
  2. Bakker H 1985J. Less Common Metals 105 129CrossRefGoogle Scholar
  3. Benjamin J S 1976Sci. Am. 234 40CrossRefGoogle Scholar
  4. Bonetti E, Cocco G, Enzo S and Valde G 1990Mater. Sci. Tech. 6 1258Google Scholar
  5. Cocco G, Soletta I, Battezzati L, Baricco M and Enzo S 1980Philos. Mag. B61 473Google Scholar
  6. Eckert J, Schultz L and Urban K 1991Mater. Sci. Engg. A133 393CrossRefGoogle Scholar
  7. Egami T and Waseda Y 1984J. Non-Cryst. Solids 64 113CrossRefGoogle Scholar
  8. El-Eskandarany M S, Itoh F, Aoki K and Suzuki R 1990J. Non-Cryst. Solids 117/118 729CrossRefGoogle Scholar
  9. Eshelby J D 1956Solid State Phys. 3 79CrossRefGoogle Scholar
  10. Fecht H J, Han G, Fu Z and Johnson W L 1990J. Appl. Phys. 67 1744CrossRefGoogle Scholar
  11. Friedel J 1964Dislocations (Oxford: Pergamon) p. 418Google Scholar
  12. Gallego L J, Somoga J A and Alonso J A 1990J. Phys. Condensed Matter 2 6245CrossRefGoogle Scholar
  13. Gilman P S and Benjamin J S 1983Ann. Rev. Mater. Sci. 13 279CrossRefGoogle Scholar
  14. Guo W, Martelli S, Burgio N, Magini M, Padella F, Paradiso E and Soletta I 1991J. Mater. Sci. 26 6190CrossRefGoogle Scholar
  15. Highmore R J, Evetts J E, Greer A L and Somekh R E 1987Appl. Phys. Lett. 50 566CrossRefGoogle Scholar
  16. Hori S, Tai H and Narita Y 1985Proc. rapidly quenched metals V, (eds) S Steeb and H Warlimont (Amsterdam: Elsevier) pp 911Google Scholar
  17. Johnson W L 1986Prog. Mater. Sci. 30 81CrossRefGoogle Scholar
  18. Koch C C 1989Ann. Rev. Mater. Sci. 19 121CrossRefGoogle Scholar
  19. Koch C C, Cavin O B, Mc Kamey C G and Scorbrough J O 1983Appl. Phys. Lett. 43 1017CrossRefGoogle Scholar
  20. Lee P Y and Koch C C 1987J. Non-Cryst. Solids 94 88CrossRefGoogle Scholar
  21. Lee P Y, Jang J and Koch C C 1988J. Less Common Metals 140 73CrossRefGoogle Scholar
  22. Massalski T B and Woychik C G 1985Acta Metall. 33 1873CrossRefGoogle Scholar
  23. Matsuki K, Inoue A, Kimura H M and Masumoto T 1988Mater. Sci. Engg. 97 47CrossRefGoogle Scholar
  24. Miedema A R, de Chatel P F and de Boer F R 1980Physica B100 1Google Scholar
  25. Murray J L 1988Metall. Trans. A19 243Google Scholar
  26. Murty B S, Ranganathan S and Mohan Rao M 1989Proc. of the Indo-US workshop on metastable microstructures, Goa (in press)Google Scholar
  27. Murty B S, Mohan Rao M and Ranganathan S 1990Scr. Metall. 24 1819CrossRefGoogle Scholar
  28. Murty B S, Ranganathan S and Mohan Rao M 1992Mater. Sci. Engg. A149 231CrossRefGoogle Scholar
  29. Niessen A K, de Boer F R, Boom R, de Chattel P F, Mattena W C H and Miedema A R 1983Calphad 7 52CrossRefGoogle Scholar
  30. Oehring M and Bormann R 1991Mater. Sci. Engg. A134 1330CrossRefGoogle Scholar
  31. Pearson W B 1974Handbook of lattice spacings and structures of metals and alloys, (Oxford: Pergamon)Google Scholar
  32. Politis C and Johnson W L 1986J. Appl. Phys. 60 1147CrossRefGoogle Scholar
  33. Schultz L 1988Mater. Sci. Engg. 97 15CrossRefGoogle Scholar
  34. Schulz R, Trudeau M L and Van Neste A 1991Mater. Sci. Engg. A134 1354CrossRefGoogle Scholar
  35. Schwarz R B and Johnson W L 1983Phys. Rev. Lett. 51 415CrossRefGoogle Scholar
  36. Schwarz R B and Koch C C 1986Appl. Phys. Lett. 49 146CrossRefGoogle Scholar
  37. Schwarz R B, Petrich R R and Saw C K 1985J. Non-Cryst. Solids 76 281CrossRefGoogle Scholar
  38. Schwarz R B, Nash P and Turnbull D 1987J. Mater. Res. 2 456CrossRefGoogle Scholar
  39. Simozar S and Alonso J A 1984Phys. Status Solidi A81 55Google Scholar
  40. Smithells C J 1983Metals reference book (London: Buttersworth) p. 13–10 13– 56Google Scholar
  41. Sundaresan R and Froes F H 1987J. Metals 39 22Google Scholar
  42. Sundaresan R, Jackson A G, Krishna Murthy S and Froes F H 1988Mater. Sci. Engg. 97 115CrossRefGoogle Scholar
  43. Suryanarayana C and Froes F H 1991Proc. INCAL-91 (eds) E S Dwarakadasa, S Seshan and K P Abraham, p. 593Google Scholar
  44. Uenishi K, Kobayashi K F, Ishihara K N and Shingu P M 1991Mater. Sci. Engg. A134 1342CrossRefGoogle Scholar
  45. Van der Kolk C J, Miedema A R and Niessen A K 1988J. Less Common Metals 145 1CrossRefGoogle Scholar
  46. Veltl G, Scholz B and Kunze H D 1991Mater. Sci. Engg. A134 987Google Scholar
  47. Weeber A W 1987J. Phys. F: Met. Phys. 17 809CrossRefGoogle Scholar
  48. Weeber A W and Bakker H 1988Physica B153 93Google Scholar
  49. Willey L A and Margolin H 1973Metals Handbook (Metals Park, Ohio: ASM) p. 264Google Scholar

Copyright information

© Indian Academy of Sciences 1993

Authors and Affiliations

  • B S Murty
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations