Advertisement

Bulletin of Materials Science

, Volume 18, Issue 7, pp 865–874 | Cite as

Liquid phase epitaxial growth of pure and doped GaSb layers: morphological evolution and native defects

  • P S Dutta
  • H L Bhat
  • Vikram Kumar
Article

Abstract

Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from theC-V characteristics. Layers grown from antimony rich melts always exhibitp-type conductivity. In contrast, a type conversion fromp- ton- was observed in layers grown from gallium rich melts below 400 C. The electron mobility of undopedn-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.

Keywords

Liquid phase epitaxy growth GaSb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anayama C, Tanahashi T, Kuwatsuka H, Nishiyama S, Isozumi S and Nakajima K 1990Appl. Phys. Letts. 56 239CrossRefGoogle Scholar
  2. Bantein F, Bauser E and Weber J 1987J. Appl. Phys. 61 2803CrossRefGoogle Scholar
  3. Bauser E, Frick M, Loechner K S, Schmidt L and Ulrich R 1974J. Crystal Growth 27 148Google Scholar
  4. Baxter R D, Reid F J and Beer A C 1967Phys. Rev. 162 718CrossRefGoogle Scholar
  5. Dutta P S, Sangunni K S, Bhat H L and Kumar V 1994J. Crystal Growth 141 44CrossRefGoogle Scholar
  6. Dutta P S, Koteswara Rao K S P, Bhat H L, Gopalakrishna Naik K and Kumar V 1995J. Crystal Growth 142 14CrossRefGoogle Scholar
  7. France P W, Carter S F, Moore M W and Williams J R 1986SPIE 618 51Google Scholar
  8. Ichimura M, Higuchi K, Hattori Y, Wada T and Kitamura N 1990J. Appl. Phys. 68 6153CrossRefGoogle Scholar
  9. Kuphal E 1991Appl. Phys. A52 380Google Scholar
  10. van Maaren M H 1966J. Phys. Chem. Solids 27 472CrossRefGoogle Scholar
  11. Mattes B L and Route R K 1974J. Crystal Growth 27 133Google Scholar
  12. Miki H, Segawa K and Fujibayashi K 1974Jpn. J. Appl. Phys. 13 203CrossRefGoogle Scholar
  13. Milnes A G and Polyakov A Y 1993Solid State Electronics 36 803CrossRefGoogle Scholar
  14. Mottram A and Peaker A R 1974J. Crystal Growth 27 193Google Scholar
  15. Saul R H and Roccasecca D D 1973J. Appl. Phys. 44 1983CrossRefGoogle Scholar
  16. Small M B and Crossley I 1974J. Crystal Growth 27 35Google Scholar
  17. Small M B, Blum J M and Potemski R M 1977Inst. Phys. Conf. Ser. 33a 9Google Scholar
  18. Sze S M 1981Physics of semiconductor devices (New York: Wiley) Ch. 7Google Scholar
  19. Takeda Y, Noda S and Sasaki A 1985J. Appl. Phys. 57 1261CrossRefGoogle Scholar
  20. Tran D C, Siegel G H Jr. and Bendow B 1984Lightwave Technol. LT-2 536Google Scholar
  21. Woelk C and Benz K W 1974J. Crystal Growth 27 177Google Scholar

Copyright information

© Indian Academy of Sciences 1995

Authors and Affiliations

  • P S Dutta
    • 1
  • H L Bhat
    • 1
  • Vikram Kumar
    • 1
    • 2
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Solid State Physics LaboratoryDelhiIndia

Personalised recommendations