Bulletin of Materials Science

, Volume 19, Issue 1, pp 51–60 | Cite as

Hydrogen in semiconductors

  • P C Srivastava
  • U P Singh
Proceedings Of The Workshop On ‘Hydrogen In Materials’, New Delhi, 1994


Hydrogen in crystalline semiconductors has become a recent curiosity because of its high diffusivity and strong chemical activity in such materials. In contrast to the proton motion in ionic materials which gives rise to an enhanced conductivity, hydrogen in electronic materials interact with structural disorders and chemical impurities to control the electronic flow. Deep gap states in crystalline semiconductors due to various disorders such as surface/interface, grain boundaries, dislocations, irradiation and implantation damage etc. have been removed due to hydrogen bondings.

Hydrogen incorporation is done by plasma and direct ion beam hydrogenation methods, implantation technique and by a novel technique of damage free introduction. The most studied materials are silicon and gallium arsenide.I - V,C - V, DLTS and IR studies have been carried out on hydrogenated semiconductors to characterize the electronic flow, gap states and the nature of chemical bonds. Improvement in ideality factors of diodes, reduction in free carrier concentration, removal or reduction of deep states and appearance of new bondings such as Si-H, P-H, B-H etc. have been observed from various techniques.

The present paper reviews the various features of hydrogenation studies in crystalline silicon and gallium arsenide and highlights our results of hydrogenation studies on Pd/semiconductor devices.


Semiconductor hydrogen interface states passivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amore Bonapasta A, Lapiccirella A, Tomassinia N and Capizzi M 1989Phys. Rev. B39 12630Google Scholar
  2. Bergman K, Stavola M, Pearton S J and Lopata J 1988Phys. Rev. B37 2770Google Scholar
  3. Chang K J 1991Solid State Commun. 78 273CrossRefGoogle Scholar
  4. Chang K J and Chadi D J 1989Phys. Rev. B40 11644Google Scholar
  5. Chevallier J, Pajot B, Jalil A, Mostefaui R, Rahbi R and Boisy M C 1988MRS Proc. 104 281Google Scholar
  6. Constant E, Caglio N, Chevallier J and Pesant J C 1987Electron. Lett. 23 841CrossRefGoogle Scholar
  7. Denteneer P J H, Van de Walle C G and Pantelides S T 1990Phys. Rev. B41 3885Google Scholar
  8. Johnson N M 1985Phys. Rev. B31 5525Google Scholar
  9. Johnson N M, Burnham R D, Street R A and Thornton R C 1986aPhys. Rev. B33 1102Google Scholar
  10. Johnson N M, Herring C and Chadi D J 1986bPhys. Rev. Lett. 56 769CrossRefGoogle Scholar
  11. Keramati B and Zemel J 1982J. Appl. Phys. 53 1091CrossRefGoogle Scholar
  12. Lagowski J, Kaminska M, Parsey J M, Jr Gatos H C and Lichtensteiger M 1982Appl. Phys. Lett. 41 1078CrossRefGoogle Scholar
  13. Lang D V 1974J. Appl. Phys. 45 3014CrossRefGoogle Scholar
  14. Lundstrom I 1981Sensors Actuators 1 403CrossRefGoogle Scholar
  15. Mu X C, Fonash S J, Oehrlein G S, Chakravarti S N, Parks C and Keller J 1986J. Appl. Phys. 59 2958CrossRefGoogle Scholar
  16. Mu X C, Fonash S J and Singh R 1986Appl. Phys. Lett. 49 67CrossRefGoogle Scholar
  17. Nandhra P S, Newman R C, Murray R, Pajot B, Chevallier J, Beall B and Harris J 1988Semicond. Sci. Technol. 3 356CrossRefGoogle Scholar
  18. Pajot B, Newman R C, Murray R, Jalil A, Chevallier J and Azoulay R 1988Phys. Rev. B37 4188Google Scholar
  19. Pankove J I and Johnson N M (eds) 1990Hydrogen in semiconductors (New York: Academic Press)Google Scholar
  20. Pankove J I, Zanzucchi P J, Magee C W and Lucovsky G 1985Appl. Phys. Lett. 46 421CrossRefGoogle Scholar
  21. Pantelides S T 1987Appl. Phys. Lett. 50 995CrossRefGoogle Scholar
  22. Pearton S J 1982Phys. Status Solidi A72 K73Google Scholar
  23. Pearton S J, Corbett J W and Stavola M 1992Hydrogen in crystalline semiconductors (Berlin: Springer-Verlag)Google Scholar
  24. Pearton S J and Tavendale A J 1982Phys. Rev. B26 7105Google Scholar
  25. Singh U P 1993Effect of hydrogenation on Pd/n-GaAs, Pd/b-GaAs and Pd/n-Si devices, Ph.D. Thesis, Banaras Hindu University, VaranasiGoogle Scholar
  26. Singh R, Fonash S J, Rohatgi A, Rai Choudhury P and Gigante J 1984J. Appl. Phys. 55 867CrossRefGoogle Scholar
  27. Singh U P, Srivastava P C and Chandra S 1995Semicond. Sci. Technol. 10 1368CrossRefGoogle Scholar
  28. Singh V A, Weigel C, Corbett J W and Roth L M 1977Phys. Status Solidi B81 637CrossRefGoogle Scholar
  29. Srivastava P C, Chandra S and Singh U P 1991Semicond. Sci. Technol. 6 1126CrossRefGoogle Scholar
  30. Srivastava P C, Singh U P and Chandra S 1992Solid state ionics: materials and applications (eds) B V R Chowdariet al p. 679Google Scholar
  31. Srivastava P C, Singh U P, Coluzza C and Chandra S 1994Solid State Electron. 37 520CrossRefGoogle Scholar
  32. Srivastava P C, Tripathi D and Chandra S 1988Semicond. Sci. Technol. 3 1022CrossRefGoogle Scholar
  33. Stutzmann M and Chevallier J 1991Hydrogen in semiconductors: bulk and surface properties (Netherlands: North-Holland)Google Scholar
  34. Tripathi D, Srivastava P C and Chandra S 1989Phys. Rev. B39 13420Google Scholar
  35. Tripathi D, Srivastava P C and Chandra S 1992Solid State Electron. 35 1185CrossRefGoogle Scholar
  36. Van de Walle C G, Denteneer P J H and Pantelides S T 1989Phys. Rev. B39 10791Google Scholar
  37. Van Wieringen A and Warmoltz N 1956Physica 22 849CrossRefGoogle Scholar
  38. Yaspir A S, Hadizad P, Lu T M, Corelli J C, Corbett J W, Lanford W A and Bokhru H 1988Phys. Rev. B37 8982Google Scholar
  39. Zhang S B and Chadi D J 1990Phys. Rev. B41 3882Google Scholar

Copyright information

© The Indian Academy of Sciences 1996

Authors and Affiliations

  • P C Srivastava
    • 1
  • U P Singh
    • 1
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations