Advertisement

Sadhana

, Volume 20, Issue 5, pp 815–850 | Cite as

Trends in radar absorbing materials technology

  • K J Vinoy
  • R M Jha
Article

Abstract

The research in the area of Radar Absorbing Materials (RAMs) has been actively pursued for at least four decades. Although resonant RAMs were originally designed by transmission line approach, and the broad band RAMs were obtained by multilayering, the quest for ultrawide band performance has led to novel approaches such as chirality and even exploring biochemical products. It is observed that radome materials are frequently used as RAMs. The understanding of the underlying principles of electromagnetic analysis and design, fabrication and the trends in RAMs reviewed in this paper could lead to indigenisation, and even pioneering next generation of RAM technology.

Keywords

Radar absorbing materials (RAM) Radar cross section (RCS) reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam J A 1988 How to design an invisible aircraft.IEEE Spectrum (4): 26–31Google Scholar
  2. Alexpoulos N G 1969 Radar cross section of perfectly conducting spheres coated with a certain class of radially inhomogeneous dielectrics.IEEE Trans. Antennas Propag. AP-17: 667–669CrossRefGoogle Scholar
  3. Amin M B, James J R 1981 Techniques for the utilization of hexagonal ferrites in radar absorbers, Part I.Radio Electron. Eng. 51: 209–218CrossRefGoogle Scholar
  4. Aoto T, Yoshida N, Fukai I 1987 Transient analysis of the electromagnetic field for a wave absorber in three-dimensional space.IEEE Trans. Electromagn. Compat. EMC-29: 18–23CrossRefGoogle Scholar
  5. Army Material Development and Readiness Command 1982 Radiation-resistant radar materials: Analytical and experimental study identifies materials potentially resistant to nuclear radiation damage. NTIS Tech Note, PB82970294XSP.Google Scholar
  6. Arsaev I E 1982 Plane wave scattering by bodies of revolution.Radiotech. Electron. 27: 2101–2109Google Scholar
  7. Ashley S, Gilmore C P 1988 Stealth.Pop. Sci. (7): 46–51Google Scholar
  8. Baker D E, van der Neut C A 1988 Reflection measurements of microwave absorbers.Microwave J. 31: 95–98Google Scholar
  9. Bastiere A 1989 Decision-making aid for multi-layer radar absorbent coverings. Tech. Rep. ESA-TT-1173, European Space Agency, ParisGoogle Scholar
  10. Bhattacharyya A K 1990 Radar cross section reduction of a flat plate by RAM coating.Microwave Opt. Technol. Lett. 3: 324–327CrossRefGoogle Scholar
  11. Bhattacharyya A K, Sengupta D L 1991Radar cross section analysis and control (Norwood MA: Artech House)Google Scholar
  12. Bhattacharyya A K, Tandon S K 1984 Radar cross section of a finite planar structure coated with a lossy dielectric.IEEE Trans. Antennas Propag. AP-32: 1003–1007CrossRefGoogle Scholar
  13. Blore W E 1964 The radar cross section of polyfoam towers.IEEE Trans. Antennas Propag. AP-12: 237–238CrossRefGoogle Scholar
  14. Bostick G 1985 Damping spurious microwave responses with absorbing materials.EMC Technol. 14(2): 21–27Google Scholar
  15. Bowman J J 1968 Effects of absorbers. InMethods of radar cross-section analysis (eds) J R Crispin, Jr K M Siegel (New York: Academic Press)Google Scholar
  16. Bowman J J, Weston V H 1966 The effect of curvature on the reflection coefficient of layered absorbers.IEEE Trans. Antennas Propag. AP-14: 760–767CrossRefGoogle Scholar
  17. Bradshaw P S 1989 Signature management and structural materials. InMaterials and processing-Move to the 90’s Proc. of SAMPE (Amsterdam: Elsevier Science) pp 187–196Google Scholar
  18. Brown A 1992 Fundamentals of stealth design.Lockheed Horizons 31(8): 6–12Google Scholar
  19. Brumley S 1987 Better RCS data with anechoic absorber characterization.Micro. RF 26: 143–148Google Scholar
  20. Cain R N, Corda A J 1991 Active radar stealth device. Patent 5 036 323, Dept. of the Navy, Washington DCGoogle Scholar
  21. Cheng Y B, Ostertag E L 1986 An absorber-wall parallel-plate waveguide.IEEE Trans. Microwave Theory Tech. MTT-34: 761–766Google Scholar
  22. Cherepanov A K 1974 Reflection of electromagnetic waves from an absorptive spiky surface.Radio Eng. Electron. Phys. 19: 120–123Google Scholar
  23. Chou R, Ling H, Lee S W 1987 Reduction of the radar cross section of arbitrarily shaped cavity structures. Tech. Rep. NASACR 180307, Illinois Univ., Urbana-ChampaignGoogle Scholar
  24. Chou R-C 1988 Modal attenuation in multilayered coated waveguides.IEEE Trans. Microwave Theory Tech MTT-36: 1167–1176CrossRefGoogle Scholar
  25. Cobucci F 1991 Building air superiority.Aerosp. Mater. Compos. 3: 16–19Google Scholar
  26. Curran J 1993 HP radar/EW testing solutions.HP RF and Microwave Test Symp. BangaloreGoogle Scholar
  27. Davies P, Popplewell J, LLewellyn J P 1986 Microwave absorption in ferrofluid composites.IEEE Trans. Magn. MAG-22: 1131–1133CrossRefGoogle Scholar
  28. de Hoop A T 1981 Theorem on maximum absorption of electromagnetic radiation by a scattering object of bounded extend.Radio Sci. 16: 971–974Google Scholar
  29. Deleuze C 1992 Radar absorbing materials.Chocs 6: 15–29Google Scholar
  30. Emerson W H 1973 Electromagnetic wave absorbers, anechoic chambers through the years.IEEE Trans. Antennas Propag. AP-21: 484–490CrossRefGoogle Scholar
  31. Engheta N, Zablocky P G 1990 A step towards determining transient response of chiral materials - Kramers-Kronig relations for chiral parameters.Electron. Lett. 26: 2132–2134CrossRefGoogle Scholar
  32. Falkenbach G J 1965 Limitations in determining absorbing material parameters.Proc. IEEE 53: 1097–1098Google Scholar
  33. Fante R L, McCormack M T 1988 Reflection properties of the Salisbury screen.IEEE Trans. Antennas Propag. AP-36: 1443–1454CrossRefGoogle Scholar
  34. Fernandez A, Valenzula A 1985 General solution for single-layer electromagnetic wave absorber.Electron. Lett. 21: 20–21CrossRefGoogle Scholar
  35. Gauss A 1982 A new method of EM absorbing coating. Tech. Rep., AD A117472, Ballistic Research Lab., Aberdeen Proving Ground, MDGoogle Scholar
  36. Ginzton E L 1957Microwave measurements (New York: McGraw Hill)Google Scholar
  37. Guillot T 1992Contribution to the modelling of the electromagnetic properties of random dielectric-conductor mixtures. Ph D thesis (Rep. ETN-93-93046), Office National d’Etudes et de Recherches Aerospatiales, ParisGoogle Scholar
  38. Guillot T, Bobillot G 1991 Microwave measurement of the electrical conductivity of an elementary grain of a conducting powder. ONERA Tech. Rep. TP 1991-40 ParisGoogle Scholar
  39. Hahn H T 1991 The variation of permeability with ferrite file density.J. Appl. Phys. B69: 6195–6197CrossRefGoogle Scholar
  40. Halpren O, Johnson M J Jr Radar summary report of Harp project. OSRD Div 14, vol. 1 (part π), ch. 9–12Google Scholar
  41. Hanson R L, Kiehle M H 1982 Performance considerations in the design of subsonic missile.AIAA Aerosp. Sci. 20th Meeting (Paper No. 82-0371)Google Scholar
  42. Harrington J J 1987 Missile decoy radar cross section enhancer. Patent NTIS ADD0135608XSP, Department of the Air Force, Washington DCGoogle Scholar
  43. Hatakeyama K, Inui T 1984 Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers.IEEE Trans. Magn. MAG-20: 1261–1263CrossRefGoogle Scholar
  44. He J, Lu Z, Su Y 1992 Experimental investigation on the ultra-wideband radar characteristics of coating RAMs targets.IEE Proc. Int. Conf. London: pp. 493–496Google Scholar
  45. Hemmati H, Mathur J C, Eichhorn W L 1985 Submillimeter and millimeter wave characterization of absorbing materials.Appl. Opt. 24: 4489–4492CrossRefGoogle Scholar
  46. Hempel K A, Roos W 1981 Microwave absorption along minor hysterisis loops of single domain particles with uniaxial magnetic anisotropy.IEEE Trans. Magn. MAG-17: 2642–2644CrossRefGoogle Scholar
  47. Holland R, Cho K S 1986 Radar cross-section of damped cylinders and dielectric strips. Tech. Rep. APITR129 (Applied Physics Inc. Albuquerque NM)Google Scholar
  48. Hurmuth H F 1983 On the effect of absorbing materials on electromagnetic waves with large relative bandwidth.IEEE Trans. Electromagn. Compat. EMC-25: 32–39CrossRefGoogle Scholar
  49. Jaggard D L, Engheta N 1989 Chirosorb as an invisible medium.Electron. Lett. 25: 173–174CrossRefGoogle Scholar
  50. Jaggard D L, Engheta N, Liu J 1990 Chiroshield — a Salisbury/Dallenbach shield alternative.Electron. Lett. 26: 1332–1334CrossRefGoogle Scholar
  51. Jaggard D L, Liu J C, Sun X 1991 Spherical chiroshield.Electron. Lett. 27: 77–79CrossRefGoogle Scholar
  52. Jones A K, Wooding E R 1964 A multilayer microwave absorber.IEEE Trans. Antennas Propag. AP-12: 508–509CrossRefGoogle Scholar
  53. Joseph P J 1988U TD (Uniform geometrical theory of diffraction) scattering analysis of pyramidal absorber for design of compact range chambers. Master’s thesis (AFITCINR88193), Air Force Inst. of Technol., Wright-Patterson AFB OHGoogle Scholar
  54. Kashiwa T, Yoshida N, Fukai I 1990 Simulation of the reduction characteristics of scattering from an aircraft coated with a thin-type absorber by the spatial network method.Electron. Lett. 26: 289–290CrossRefGoogle Scholar
  55. Kent B 1982 An automated dual horn-reflector microwave absorber measurement system. Tech. Rep. AFWALTR811284 (Air Force Wright Aeronautical Labs Wright-Patterson AFB, OH.) Vol IGoogle Scholar
  56. Knott E F 1979 The thickness criterion for single layer radar absorbers.IEEE Trans. Antennas Propag. AP-27: 698–701CrossRefGoogle Scholar
  57. Knott E F, Shaeffer J F, Tuley M T 1985Radar cross section (Norwood MA: Artech House)Google Scholar
  58. Kong J A 1975Theory of electromagnetic waves (New York: Wiley Interscience)Google Scholar
  59. Kumar A 1987 Acetylene black-A single-layer microwave absorbers.Electron. Lett. 23: 184–185CrossRefGoogle Scholar
  60. Kumar P M 1994 EM design aspects of airborne radomes. Project Report, National Aerospace Laboratories, BangaloreGoogle Scholar
  61. Kumar P M, Vinoy K J, Jha R M 1994 An indexed database of radome (1960–1993). NAL Project Document PD AL 9405, National Aerospace Laboratories, BangaloreGoogle Scholar
  62. Lee C S, Lee S W, Chuang S L 1986 Normal modes in an overmoded circular waveguide coated with lossy materials.IEEE Trans. Microwave Theory Tech. MTT-34: 773–785CrossRefGoogle Scholar
  63. Lee S W, Lo Y T, Chuang S L, Lee C S 1985 Numerical methods for analyzing electromagnetic scattering. Semiann. Rep., NAS126176141, Illinois Univ., Urbana-ChampaignGoogle Scholar
  64. Lehto A, Tourinen J, Raisanen A 1991 Reflectivity of absorbers in 100–200 GHz range.Electron. Lett. 27: 1699–1700CrossRefGoogle Scholar
  65. Leontovich M A 1957 Appendix of diffraction, refraction and reflection of radio waves. Rep. AD 117276 (US Govt. Printing Press, Washington DC)Google Scholar
  66. Li H J, Farhat N H, Shen Y 1989 Radar cross section reduction by absorber covering.J. Electromagn. Waves Appl. 3: 219–235Google Scholar
  67. Lynnworth L C 1964 Audio frequency characterization of RAM.Proc. IEEE 52: 98–99CrossRefGoogle Scholar
  68. MacFarlane G G 1945 Radar camouflage research and development by the Germans. Tech. Rep. T1905 M/99 TREGoogle Scholar
  69. Macleod J B 1989Modeling of camouflage netting for radar cross section analysis. Master’s thesis (AFITGEENG89J2), School of Engineering Air Force Inst. of Technol., Wright-Patterson AFB OHGoogle Scholar
  70. Maffioli F 1970 Constrained variable metric optimization of layered electromagnetic absorbers.Alta Freq. (Eng. Edn.) 39: 154–164Google Scholar
  71. Martin P W 1992 Development of F-117 stealth fighter.Lockheed Horizons 31: 18–23Google Scholar
  72. Marty V, Combes P-F, Borderies P 1992 Radar cross section of a rectangular waveguide array with complex load and covered with dielectric.La Rech. Aerosp. 4: 15–25Google Scholar
  73. McCauley J W, Halpin B M, Jr. Hynes T, Eitelman S D 1980 Radar absorptive ferrite/resin composites from industrial effluent.Ceramic Eng. Sci. Proc. 1: 356–369Google Scholar
  74. McCluggage W A 1987Study of radar cross section (RCS) characteristics and their application in future weapon systems. Master’s thesis (ETN8892081), RAF College, CranwellGoogle Scholar
  75. Mishra S R, Pavlasek J J F, Yazar M N 1982 Design criteria for costeffective broad band absorber-lined chambers for EMS measurements.IEEE Trans. Electromagn. Compat. EMC-24: 12–19CrossRefGoogle Scholar
  76. Mitsmakher M Iu 1980. Quality of modern anechoic chambers and radio wave absorbing materials.Antenny 28: 147–164Google Scholar
  77. Montgomery C G 1957Techniques of microwave measurements (New York: McGraw-Hill)Google Scholar
  78. Montgomery C G, Dicke R H, Purcell E 1948Principles of microwave circuits. Radiation Lab Series 8 (Boston, MA: Boston Technol.)Google Scholar
  79. Moreland J, Peters L Jr 1966 The specular radar cross section of absorber coated bodies.IEEE Trans. Antennas Propag. AP-14: 799–800CrossRefGoogle Scholar
  80. Musal H M, Hahn H T 1989 Thin layer electromagnetic absorber design.IEEE Trans. Magn. MAG-25: 3851–3853CrossRefGoogle Scholar
  81. Musal H M, Smith D C 1990 Universal design chart for specular absorbers.IEEE Trans. Magn. MAG-26: 1462–1464CrossRefGoogle Scholar
  82. Naamlooze Vennootschap Machinerieen 1936French Patent 802 728Google Scholar
  83. Nagasubramanian G, Distefano S, Liang R H 1990 Silicon containing electroconductive polymers, structures made therefrom. Patent Application. Rep. PAT-APPL-7-479 485, (NASA, Pasadena CA)Google Scholar
  84. Nagornov A I, Postnikov A I, Vasil’ev V P, Gordeev V A 1978 Study of the absorption properties of resistive films aligned perpendicular to the waveguide axis.Radiofizika 21: 151–153Google Scholar
  85. Naito Y 1970 Generalised Snock’s limits in ferrite.Jpn. J. Phys. Google Scholar
  86. Naito Y, Suetake K 1965 Construction of multilayer absorbing wall for microwaves.Electron. Commun. Jpn. 48(12): 112–121Google Scholar
  87. Naito Y, Suetake K 1971 Application of ferrite to Electromagnetic wave absorber and its characteristics.IEEE Trans. Microwave Theory Tech. MTT-19: 65–72CrossRefGoogle Scholar
  88. Olmedo L 1992 Absorbing materials based on conductive polymersChocs 6: 53–65Google Scholar
  89. Ono M, Suzuki M 1967 Reflection and attenuation characteristics of multilayer absorber at oblique incidence.Electron. Commun. Jpn. 50(9): 84–92Google Scholar
  90. Ono M, Okokawa S, Suzuki M 1967 Fundamental characteristics of the microwave absorber.Yamagata Univ. Bull. (Eng.) 9: 569–579Google Scholar
  91. Ono M, Ikuta A, Katagiri Y 1979 Synthesis of an electromagnetic wave absorber with good reflection characteristics at both normal and oblique incidence.Electron. Commun. Jpn. 62: 59–62Google Scholar
  92. Ono M, Yokoto T, Shibuya T 1983 A practical method of measuring the scattering characteristics of the pyramidal absorbers.Electron. Commun. Jpn. 66: 63–71CrossRefGoogle Scholar
  93. Perini J, Cohen L S 1991 Design of radar absorbing materials for wide range of angles of incidence.IEEE Int. Symp. on Electromagn. Compat. (New York: IEEE) pp 418–424CrossRefGoogle Scholar
  94. Post E J 1962 Formal structure of electromagnetics (Amsterdam: North Holland)zbMATHGoogle Scholar
  95. Rogers S W 1986Radar cross section prediction for coated perfect conductors with arbitrary geometries. Master’s thesis (Rep. AFITCINR86105T), Air Force Inst. of Technol., Wright-Patterson AFB, OHGoogle Scholar
  96. Ruck G T, Barrick D E, Stuart W D, Krichbaum C K 1970Radar cross-section handbook (New York: Plenum) vol. 2Google Scholar
  97. Rudduck R C, Yu C L 1974 Circular waveguide method of measuring reflection properties of absorber panels.IEEE Trans. Antennas Propag. AP-22: 251–256CrossRefGoogle Scholar
  98. Salisbury W W 1952 Absorbent body for electromagnetic waves.US Patent 2599944Google Scholar
  99. Schade H A 1945 Schornsteinfeger US tech. mission to Europe. Tech. Rep. 90-45 AD-47746Google Scholar
  100. Schmitman C, Warwick G 1990 Building the B-2.Flight Int. 139: 24–27Google Scholar
  101. Severin A 1956 Nonreflecting absorbers for microwave radiation.IEEE Trans. Antennas Propag. AP-4: 385–392CrossRefGoogle Scholar
  102. Shi Z, Ding C, Jia Y 1993 Effects of absorbent materials on the RCS of a partially coated scatterer.Microwave Opt. Technol. Lett. 6: 109–111CrossRefGoogle Scholar
  103. Shimizu Y, Suetake K 1969 Minimum thickness design of broadband absorbing wall.Electron. Commun. Jpn. 52-B(4): 90–97Google Scholar
  104. Shneyderman Y A 1985 Radio-absorbing materials. Tech. Rep. NTIS Rep. ADA1574961XSP (Foreign Technol. Div.), Wright-Patterson AFB, OHGoogle Scholar
  105. Stonier R A 1991 Stealth aircraft and technology from World War II to the Gulf.SAMPE J. 27(4): 9–17Google Scholar
  106. Strickel M A, Taflove A 1990 Time domain synthesis of broad band absorptive coatings for two dimensional conducting targets.IEEE Trans. Antennas Propag. AP-38: 1084–1091CrossRefGoogle Scholar
  107. Swarner W G, Peters L Jr 1963 Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders.IEEE Trans. Antennas Propag. AP-11: 558–569CrossRefGoogle Scholar
  108. Sweetman B 1982 The bomber that radar cannot see.New Sci. 93: 565–568Google Scholar
  109. Sweetman B 1987 Stealth in service.Interavia 42: 39–40Google Scholar
  110. Tretyakov S A, Oksanen M I 1991 Biisotropic layer as a polarization transformer. Tech. Rep., ISBN-951-22-0770-2, Electromagnetics Lab. Helsinki Univ. of Technology, Espoo, FinlandGoogle Scholar
  111. Tsuji K 1992 Low observability aperture design for expendable countermeasures devices. Patent Rep., Patent-5 083 128, Dept. of the Navy, Washington, DCGoogle Scholar
  112. Veinger A I, Zabrodskii A G, Krasikov L A, Khorosheva N E 1990 Anomalous microwave absorption in magnetically filled low-molecular-weight rubbers.Am. Inst. Phys. 855–856Google Scholar
  113. Vinoy K J, Jha R M 1994 Radar absorbing materials (RAM): a cross indexed bibliography (1956–1993). NAL Project Document PD AL 9404, National Aerospace Laboratories, BangaloreGoogle Scholar
  114. Walkington J W, Huster L W 1979 Achieving effective radar cross section flight profiles on the B-1 aircraft. InSoc. Fli. Test Eng., Proc. 10th Annu. Symp. (Lancaster, CA: Soc. Flight Test Eng.)Google Scholar
  115. Weston V H 1963 Theory of absorbers in scattering.IEEE Trans. Antennas Propag. AP-11: 578–584CrossRefGoogle Scholar
  116. Wims P R, Palmer D D 1991 Nondestructive microwave scanning measurements for material property evaluation. Review of progress in quantitative nondestructive evaluation.Proc. 17th Annu. Rev. (New York: Plenum P.) A10: 551–558Google Scholar
  117. Yang C F, Burnside W D, Rudduck R C 1992 A periodic moment method solution for TM scattering from lossy dielectric bodies with application to wedge absorber.IEEE Trans. Antennas Propag. AP-40: 652–660CrossRefGoogle Scholar
  118. Yee K S 1966 Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.IEEE Trans. Antennas Propag. AP-14: 302–307Google Scholar
  119. Yi P, Gan Y 1991 Investigation on microwave absorber with additive of metal coated carbon fiber.Acta Aeronąut. Astronąut. Sin. B12: 655–657Google Scholar
  120. Yokoi H, Fukumaro H 1971 Low-sidelobe paraboloidal antenna with microwave absorbers.Electron. Commun. Jpn. 54: 34–39Google Scholar

Copyright information

© Indian Academy of Sciences 1995

Authors and Affiliations

  • K J Vinoy
    • 1
  • R M Jha
    • 1
  1. 1.Computational Electromagnetics Lab, Aerospace Electronics & Systems DivisionNational Aerospace LaboratoriesBangaloreIndia

Personalised recommendations