Forstwissenschaftliches Centralblatt

, Volume 103, Issue 1, pp 28–48 | Cite as

Die Postulate von Koch und die Luftverschmutzung

  • F. T. Last
  • D. Fowler
  • P. H. Freer-Smith
Article

Zusammenfassung

Der PathologeKoch hat 1891 das Postulat aufgestellt, daß ein Krankheitserreger, der einer Pflanze (einem Tier usw.) eingeimpft wird, dieselben Schäden verursachen müsse wie ein Befall mit dem gleichen Erreger in der Natur. Diese Forderung muß auch für die Erforschung aller Gegebenheiten der Luftverschmutzung, des “Milieus” der Luftverunreinigung, gelten: Luftverunreinigungen, mit denen gesunde Pflanzen im Experiment begast werden, müssen die gleichen Schäden verursachen wie die entsprechenden Verunreinigungen in der Natur.

Diese Forderung ist aber in der Erforschung der Luftverunreinigungen und ihrer Auswirkungen auf die Pflanzen nicht beachtet worden. Daher findet man heute in der umfangreichen Literatur über dieses Problem zum Teil widersprüchliche Ergebnisse. Zwar war es möglich, aufgrund der äußeren Erscheinungen von Pflanzenschäden Empfindlichkeitsstufen von Baumarten gegenüber Luftverunreinigungen zu erarbeiten; man konnte durch Messungen Tages- und Jahresmittelwerte der luftverunreinigenden Stoffe für bestimmte Gebiete erhalten; Nadel- und Laubanalysen auf bestimmte Schadstoffe aus der Luft konnten weiterhelfen—trotzdem kommt in allem keine richtige Vorstellung von der Natur der Luftverunreinigungen zum Ausdruck.

Die Autoren geben einen umfassenden Überblick über die Literatur, weisen aber zugleich darauf hin, daß das “Luftverunreinigungs-Milieu” ein sehr vielschichtiges System darstellt und zudem von anderen Gegebenheiten abhängt, besonders auch hinsichtlich seiner potentiellen Pflanzenschädigungen. Die Hauptschadstoffe und deren chemische Verbindungen werden behandelt bis hin in den Bereich der Zelle und biochemischer Fragen.

Die Forschung muß jetzt darauf achten, nicht nur Teile des Problems (wie z. B. einwirkende Mittelwerte eines bestimmten Schadstoffes), sondern das Ganze in allen seinen Verzweigungen zu sehen. Es reicht nicht, nur die physiologischen Folgen von Luftverunreinigungen auf das Baumwachstum zu erforschen, sondern das Bemühen um Erkenntnis des Luftverunreinigungs-Milieus selbst muß gleichberechtigt hinzutreten.

Koch’s postulates and the aerial pollution environment

Summary

In 1891, the pathologistKoch postulated that injecting a pathogen into a plant (an animal, etc.) must result in damage identical to that caused by the same one under field conditions. This postulate has to be valid also for research on all aspects of air pollution and its “environment”: air pollutants applied to healthy plants during an experiment must cause the same damage as they do under field conditions.

This postulate, however, has not been considered in research concerning air pollution and its effects on plants. Therefore, in part contradictory results may be found today in the voluminous literature on this problem. On the basis of visible symptoms of injury to plants it has been possible to establish grades of sensitivity of tree species to air pollution. Daily and annual mean values of air pollutants for certain areas were obtained; foliar analyses aimed at finding out about particular air-borne harmful substances helped—but regardless of all, there is no clear perception about the nature of air pollution.

The authors presents a comprehensive literature review. At the same time they also point out that the “air pollution environment” is a many-layered system which is dependent on other facts, too, especially in regard to potential injuries to plants. The major harmful substances and their chemical compounds are discussed including the sphere of the plant cell, and biochemical questions.

Research now not only has to consider parts of the problem (e. g. effects of mean levels of a certain damaging agent), but must rather focus on the problem in its entirety with all its ramifications. It is not sufficient to investigate just the physiological effects of air pollutants on tree growth; the effort to perceive the “air pollution environment”, too, has to be included as being equally important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrahamsen, G., 1980: Acid precipitation, plant nutrients and forest growth. In:D. Drablos andA. Tollan (Ed.), Ecological Impact of Acid Precipitation. Proc. Int. Conf., Sandefjord, SNSF Project, NISK, 1432 As-NLH, Norway, pp 58–63.Google Scholar
  2. Abrahamsen, G.; Bjor, K.; Horntvedt, R.; Tveite, B., 1976: Effects of acid precipitation on coniferous forest. In:F. H. Braekke (Ed.), Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway. Res. Rep. (6), SNSF Project, NISK, 1432 As-NLH; Norway, pp 37–63.Google Scholar
  3. Arndt, U.;Seufert, G.;Nobel, W., 1982: The involvement of ozone in the complex disease of the fir (Abies alba Mill.) a theory worth examining. Staub-Reinhaltung der Luft42, 243–247.Google Scholar
  4. Ashenden, T. W.;Mansfield, T. A., 1977: Influence of wind speed on the sensitivity of ryegrass to SO2 Journal of Experimental Botany28, 729–735.CrossRefGoogle Scholar
  5. Ayazloo, M.;Bell, J. N. B., 1981: Studies on the tolerance to sulphur dioxide of grass populations in polluted areas. 1. Identification of tolerant populations. New Phytologist88, 203–222.CrossRefGoogle Scholar
  6. Beilke, S., 1983: Acid deposition—the present situation in Europe. In:S. Beilke an,A. J. Elshout (Ed.) Acid deposition. Proc. of CEC Workshop, Berlin 1982. Commission of the European Communities. pp 5–32.Google Scholar
  7. Bell, J. N. B., 1982: Sulphur dioxide and the growth of grasses. In:M. H. Unsworth andD. P. Ormrod (Ed.), Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London. pp 225–246.Google Scholar
  8. Binns, W. O.;Redfern, D. B., 1983: Acid rain and forest decline in W. Germany. Forestry Commission Research and Development Paper 131. Forestry Commission, Edinburgh. 13 pp.Google Scholar
  9. Bosch, C.;Pfannkuch, E.;Baum, U.;Rehfüss, K. E., 1983: Über die Erkrankung der Fichte (Picea abies Karst.) in den Hochlagen des Bayerischen Waldes. Forstw. Cbl.102, 167–181.CrossRefGoogle Scholar
  10. Capron, T. M.;Mansfield, T. A., 1977: Inhibition of growth in tomato by air polluted with nitrogen oxides. Journal of Experimental Botany28, 112–116.CrossRefGoogle Scholar
  11. Cogbill, C. V., 1976: The effect of acid precipitation on tree growth in eastern North America. In:L. S. Dochinger andT. A. Seliga (Ed.), Proceedings First International Symposium on Acid Precipitation and the Forest Ecosystem, Ohio State University, May 1975. U. S. For. Serv. Gen. Tech. Rep. NE-23, pp 1027–1032.Google Scholar
  12. Coyne, P. I.;Bingham, G. E., 1982: Variation in photosynthesis and stomatal conductance in an ozone-stressed ponderosa pine stand: light response. Forest Science28, 257–273.Google Scholar
  13. Davis, D. D.; Wilhour, R. G., 1976: Susceptibility of woody plants to sulfur dioxide and photochemical oxidants—a literature review. U. S. Environmental Protection Agency, Corvallis, 600/3-76-702, 71 pp.Google Scholar
  14. Dochinger, L. S.;Bender, F. W.;Fox, F. L.;Heck, W. W., 1970: Chlorotic dwarf of eastern white pine caused by an ozone and sulphur dioxide interaction. Nature, London225, 476.CrossRefGoogle Scholar
  15. Dollard, G. J.;Unsworth, M. H., 1983: Field measurements of turbulent fluxes of wind-driven fog drops to a grass surface. Atmospheric Environment17, 775–780.CrossRefGoogle Scholar
  16. Dollard, G. J.;Unsworth, M. H.;Harvey, M. J., 1983: Pollutant transfer in upland regions by occult precipitation. Nature, London302, 241–243.CrossRefGoogle Scholar
  17. Elkiey, T.;Ormrod, D. P., 1979: Ozone and/or sulphur dioxide effects on tissue permeability ofPetunia leaves. Atmospheric Environment13, 1165–1168.CrossRefGoogle Scholar
  18. Evans, L. S., 1982: Biological effects of acidity in precipitation on vegetation: a review. Environmental and Experimental Botany22, 155–169.CrossRefGoogle Scholar
  19. Evans, L. S.;Lewin, K. F.;Patti, M. J.;Cunningham, E. A., 1983: Productivity of field-grown soybeans exposed to simulated acidic rain. New Phytologist93, 377–388.CrossRefGoogle Scholar
  20. Farrar, J. F.;Relton, J.;Rutter, A. J., 1977: Sulphur dioxide and the scarcity ofPinus sylvestris in the industrial Pennines. Environmental Pollution14, 63–68.CrossRefGoogle Scholar
  21. Fowler, D., 1978: Dry deposition of SO2 on agricultural crops. Atmospheric Environment,12, 369–373. Removal of sulphur and nitrogen compounds from the atmosphere in rain and by dry deposition. In:D. Drablós andA. Tollan (Ed.), Ecological Impact of Acid Precipitation. Proc. Int. Conf., Sandefjord, SNSF Project, NISK, 1432 As-NLH, Norway, pp 22–32.Google Scholar
  22. 1983: Dry deposition of SO2 onto a Scots pine forest. In:H. R. Pruppacher, R. G. Semonin andW. G. N. Slinn (Ed.), Precipitation scavenging, dry deposition and resuspension. Elsevier, New York. pp 763–774.Google Scholar
  23. Fowler, D.;Cape, J. N.;Leith, I. D.;Paterson, I. S.;Kinnaird, J. W.;Nicholson, I. A., 1982: Rainfall acidity in northern Britian. Nature, London297, 383–386.CrossRefGoogle Scholar
  24. Freer-Smith, P. H., 1983: Chronic pollution injury to some tree species in response to SO2 and NO2 mixtures. Ph. D. Thesis, University of Lancaster, U. K.Google Scholar
  25. Galbally, I. E.;Garland, J. A.;Wilson, M. J. G., 1979: Sulphur uptake from the atmosphere by forest and farmland. Nature, London280, 49–50.CrossRefGoogle Scholar
  26. Galloway, J. N.;Likens, G. E., 1981: Acid precipitation: the importance of nitric acid. Atmospheric Environment15, 1081–1085.CrossRefGoogle Scholar
  27. Garsed, S. F.;Rutter, A. J., 1982: Relative performance of conifer plantations in various tests for sensitivity to SO2, and the implications for selecting trees for planting in polluted areas. New Phytologist92, 349–367.CrossRefGoogle Scholar
  28. Grennfelt, P., 1980: Investigations of gaseous nitrates in an urban and rural area. Atmospheric Environment14, 311–316.CrossRefGoogle Scholar
  29. Grennfelt, P.;Bengtson, C.;Skärby, L., 1983: Dry deposition of nitrogen dioxide to Scots pine needles. In:H. R. Pruppacher, R. G. Semonin andW. G. N. Slinn (Ed.) Precipitation scavenging, dry deposition and resuspension. Elsevier, New York, pp 753–762.Google Scholar
  30. Guderian, R., 1977: Air Pollution, Phytotoxicity of Acidic Gases and its Significance in Air Pollution Control (Translated byC. J. Brandt). Ecological Studies Vol. 22. Springer-Verlag, Berlin/Heidelberg, 127 pp.Google Scholar
  31. Harrison, R. M.;Pio, C. A., 1983: An investigation of the atmospheric HNO3−NH3−NH4NO3equilibrium relationship in a cool humid climate. Tellus35B, 155–159.CrossRefGoogle Scholar
  32. Heath, R. L., 1975: Ozone. In:J. B. Mudd andT. T. Kozlowski (Ed.) Responses of plants to air pollution. Academic Press, New York, pp 23–55.Google Scholar
  33. Heath, R. L., 1980: Initial events in injury to plants by air pollutants. Annual Review of Plant Physiology31, 395–431.CrossRefGoogle Scholar
  34. Heath, R. L.;Frederick, P. E., 1980: Ozone alteration of membrane permeability inChlorella I. Permeability of potassium ion as measured by86Rb tracer. Plant Physiology, Lancaster64, 455–459.Google Scholar
  35. Huebert, B. J., 1983: Measurements of the dry deposition flux of nitric acid vapourd to grasslands andGoogle Scholar
  36. Huebert, B. J., 1983: Measurements of the dry deposition flux of nitric acid vapourd to grasslands and forests. In:H. R. Pruppacher, R. G. Semonin andW. G. N. Slinn (Ed.), Precipitation scavenging, dry deposition and resuspension. Elsevier, New York, pp 785–794.Google Scholar
  37. Knabe, W., 1970: Kiefernwaldverbreitung und Schwefeldioxide—Immission im Ruhrgebiet. Staub39.Google Scholar
  38. Koch, R., 1891: Ueber bakteriologische Forschung. Verhandlungen des Internationalen Medizinischen Kongresses, 10th, 1890, pp 35–47.Google Scholar
  39. Last, F. T., 1962: Analysis of the effects ofErysiphe graminis DC. on the growth of barley. Annals of Botany N.S26, 279–289. Effects of atmospheric sulphur compounds on natural and man-made terrestrial and aquatic ecosystems. Agriculture and Environment7, 299–387.Google Scholar
  40. Malcolm, D. C.;Garforth, M. F., 1977: The sulphur: nitrogen ratio of conifer foliage in relation to atmospheric pollution with sulphur dioxide, Plant and Soil47, 89–102.CrossRefGoogle Scholar
  41. Malhorta, S. S.;Hocking, D., 1976: Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytologist76, 227–237.CrossRefGoogle Scholar
  42. Mandl, R. H.;Weinstein, L. H.;McCune, D. C.;Kevery, 1973: A cylindrical, open-top chamber for the exposure of plants to air pollutants in the field. Journal of Environmental Quality2, 371–376.CrossRefGoogle Scholar
  43. Manning, W. J.;Feder, W. A., 1980: Biomonitoring air pollutants with plants. Applied Science Publishers, London, 142 pp.Google Scholar
  44. Mansfield, T. A.;Freer-Smith, P. H., 1981: Effects of urban air pollution on plant growth. Biological Review56, 343–368.CrossRefGoogle Scholar
  45. Matsumaru, T.;Yoweyama, T.;Totsuka, T.;Shiratori, 1979: Absorption of atmospheric NO2 by plants and soils II Quantitative estimation of absorbed NO2 in plants by 15-N method. Soil Science and Plant Nutrition25, 255–266.Google Scholar
  46. Miller, P. R., 1973: Oxidant-induced community change in a mixed conifer forest. In:J. Naegle (Editor), Air Pollution Damage to Vegetation. Advances in Chemistry Series No. 122, American Chemical Society, Washington, D. C. pp 101–117. Photochemical oxidant air pollutant effects on a mixed conifer forest ecosystem: a progress report, 1976. U. S. Environmental Protection Agency, Corvallis, 600/3-77-104, 339 pp. Transfer to terrestrial surfaces. Philosophical Transactions of the Royal Society, London Series B. (at press).Google Scholar
  47. Fowler, D.;Cape, J. N., 1982: Air pollutants in agriculture and horticulture. In:M. H. Unsworth andD. P. Ormrod (Ed.), Effects of gaseous air pollution in agriculture and horticulture. Butterworth Scientific, London. pp 3–26.Google Scholar
  48. Miller, P. R.;Parmeter Jr.,J. R.;Flick, B. H.;Martinez, C. W., 1969: Ozone dosage response of ponderosa pine seedlings. Journal of Air Pollution Control Association19, 435–438.Google Scholar
  49. National Academy of Sciences, 1977: Ecosystems. In: Ozone and Other Photochemical Oxidants. NAS, Washington, D. C. pp 586–642.Google Scholar
  50. Nicholson, I. A.; Fowler, D.; Paterson, I. S.; Cape, J. N.; Kinnaird, J. W. 1980: Continuous monitoring of airborne pollutants. In:D. Drablos andA. Tollan (Ed.), Ecological Impact of Acid Precipitation. Proc. Int. Conf., Sandefjord, SNSF Project. NISK, 1432 As-NLH, Norway, pp 144–145.Google Scholar
  51. Oden, S., 1976: The acidity problem—an outline of concepts. In:L. S. Dochinger andT. A. Seliga (Ed.), Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem, Ohio State University, May 1975. U. S. Forest Service General Technical Report NE-23, pp 1–36.Google Scholar
  52. Port, G. R.;Thompson, J. R., 1980: Outbreaks of insect herbivores on plants along motorways in the United Kingdom. Journal of Applied Ecology17, 649–656.CrossRefGoogle Scholar
  53. Prinz, B., 1984: Thoughts on the state of the discussion concerning the causes of forest damage in the Federal Republic of Germany. Der Forst- und Holzwirt (at press).Google Scholar
  54. Robinson, D. C.;Wellburn, A. R., 1983: Light-induced changes in the quenching of 9-amino-acridine fluorescence by photosynthetic membranes due to atmospheric pollutants and their products. Environmental Pollution32, 109–120.CrossRefGoogle Scholar
  55. Rutter, A. J., 1975: The hydrological cycle in vegetation. In:J. L. Monteith (Ed.) Vegetation and the Atmosphere. Academic Press, London pp 111–150.Google Scholar
  56. Smith, W. H., 1981: Air pollution and forests. Interactions between air contaminants and forest ecosystems. Springer-Verlag, New York. 379 pp.Google Scholar
  57. Tuazon, F. C.;Winer, A. M.;Pitts, J. N., 1981: Trace pollutant concentrations in a multiday smog episode in the California south coast air basin by long path Fourier transform infrared spectroscopy. Environmental Science and Technology15, 1232–1237.CrossRefGoogle Scholar
  58. Ulrich, B., 1984: Effects of accumulation of air pollutants in forest ecosystems. In:H. Ott andH. Stangl (Ed.), Acid Deposition. A Challenge for Europe (in press).Google Scholar
  59. Warren Spring Laboratory, 1979: National Survey on Smoke and Sulphur Dioxide, April 1978–March 1979.Google Scholar
  60. Welburn, A. R.;Wilson, J.;Aldridge, P. H., 1980: Biochemical response of plants to nitric oxide polluted atmospheres. Environmental Pollution (Series A)22, 219–228.CrossRefGoogle Scholar
  61. Whitmore, M. E.;Mansfield, T. A., 1983: Effects on long-term exposures to SO2 and NO2 onPoa pratensis and other grasses. Environmental Pollution (Series A)31, 217–235.CrossRefGoogle Scholar
  62. Yoneyama, T.;Sasakawa, H., 1979: Transformation of atmospheric NO2absorbed in spinach leaves. Plant and Cell Physiology 20, 263–266.Google Scholar
  63. Zeevaart, A. J., 1976: Some effects of fumigating plants for short periods with NO2 Environmental Pollution11, 97–107.CrossRefGoogle Scholar
  64. Ziegler, I., 1975: The effect of SO2 pollution on plant metabolism. Residue Review56, 79–105.Google Scholar

Copyright information

© Verlag Paul Parey 1984

Authors and Affiliations

  • F. T. Last
    • 1
  • D. Fowler
    • 1
  • P. H. Freer-Smith
    • 2
  1. 1.Institute of Terrestrial EcologyMidlothianScotland
  2. 2.University of LancasterLancasterEngland

Personalised recommendations