Bulletin of Materials Science

, Volume 5, Issue 3–4, pp 231–246

Hydrothermal synthesis of chromium dioxide powders and their characterisation

  • V Abdul Jaleel
  • T S Kannan
Article

Abstract

Chromium dioxide (CrO2) powders have been synthesised by decomposing CrO3 and Cr2O5 powders under hydrothermal conditions in the temperature range of 300–500°C and pressure range of 250–1200 bars. Oxides of antimony and iron have been used as modifiers to induce acicular morphology. A novel method of using alkali metal salts such as chlorides and carbonates as mineralisers produces CrO2 with superior magnetic characteristics. The particle size distributions have been correlated with the magnetic properties of the materials. The products obtained have properties rendering them useful for magnetic recording applications.

Keywords

Hydrothermal synthesis chromium dioxide magnetic recording material particle size distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal D K, Biswas A K, Rao C N R and Subbarao E C 1978Mater. Res. Bull. 13 1135CrossRefGoogle Scholar
  2. Arthur P 1960 U.S. Pat2 956 955Google Scholar
  3. Arthur P and Ingram J N 1974 U.S. Pat 3,117,093Google Scholar
  4. Basile G and Mazza A 1977Ger. Offen. 2,648,305Google Scholar
  5. Claude R, Lorthioir G and Mazieres C 1968Comptes Rendus C266 462Google Scholar
  6. Darnell F J 1961J. Appl. Phys. 11 1269CrossRefGoogle Scholar
  7. Demazeau G, Maestro P, Plante T, Pouchard M and Hagenmuller P 1979Mater. Res. Bull. 14 121CrossRefGoogle Scholar
  8. Dismukes J P, Martin D F, Ekstrom L, Wang C C and Coutts M D 1971Ind. Engg. Chem. Prod. Res. Dev. 10 319CrossRefGoogle Scholar
  9. Dyal R S and Hendricks S B 1950Soil Sci. 69 421CrossRefGoogle Scholar
  10. Hiller D M 1978J. Appl. Phys. 49 1821CrossRefGoogle Scholar
  11. Ingram J N 1960 U.S. Pat3 923 684Google Scholar
  12. Ingram J N and Swoboda T J 1962 U.S. Pat 3,034,988Google Scholar
  13. Jaleel V A, Aswath C and Kannan T S 1980Mag. Soc. Trans. India 4 18Google Scholar
  14. Jaleel V A, Aswath C, Sivaraman M, Bhaskaran T A and Kannan T S 1981 Presented at 13th Annual meeting of the Electron Microscopic Soc. India and fifty years of electron microscopy symposium, I.I.Sc., BangaloreGoogle Scholar
  15. Kubota B 1961J. Am. Ceram. Soc. 44 239CrossRefGoogle Scholar
  16. Kubota B, Nishikawa T, Yanase A, Hirota E, Mihara T and Iida Y 1963J. Am. Ceram. Soc. 46 550CrossRefGoogle Scholar
  17. Maestro P, Andriamandroso, Demazeau G, Pouchard M and Hagenmuller P 1982IEEE Trans. Magnetcis Mag-18, 1000CrossRefGoogle Scholar
  18. Montiglio U, Aspes P, Basse G and Gallinotti E 1976 U.S. Pat3, 979, 310Google Scholar
  19. Ranjan M and Karunakar K 1979 Paper presented at the III Annual technical meeting of Magnetic Society of India at Jadavpur, Calcutta.Google Scholar
  20. Robinson J W and Hockings E F 1972RCA Rev. 33 399Google Scholar
  21. Shibasaki Y, Kanamuru F, Koizumi M 1970Mater. Res. Bull 5 1051CrossRefGoogle Scholar
  22. Swoboda 1960 U.S. Pat.3 923 685Google Scholar
  23. Swoboda T J, Arthur P, Jr, Cox N L, Ingram J N, Oppegard A L and Sadler M S 1961J. Appl. Phys. 32 3475CrossRefGoogle Scholar
  24. Thamer B J, Douglas R M and Staritsky E 1957J. Am. Chem. Soc. 79 547CrossRefGoogle Scholar
  25. White W B and Roy R 1975Geochim. Cosmochim. Acta 39 803CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1983

Authors and Affiliations

  • V Abdul Jaleel
    • 1
  • T S Kannan
    • 1
  1. 1.Materials Science DivisionNational Aeronautical LaboratoryBangaloreIndia

Personalised recommendations