Molecular Neurobiology

, Volume 19, Issue 2, pp 97–110 | Cite as

New perspectives in the functional role of GABAa channel heterogeneity

  • Stefano Vicini


γ-Aminobutyric acid A (GABAA) channels responsible for inhibitory synaptic transmission possess a consistent heterogeneity of structure in terms of distinct constitutive subunits. During the past 10 years, considerable progress has been made in understanding the magnitude of this large diversity. Structural requirements for clinically important drugs such as benzodiazepines and barbiturates have been elucidated, and the anatomical distribution in distinct neuronal populations and the developmental profiles of individual subunits have been elucidated with various techniques. However, the relevance of subunit heterogeneity to synaptic transmission is still largely lacking. Recently, substantial progress has been achieved in understanding the crucial role of desensitization as a molecular determinant in defining the duration and frequency responses of inhibitory synaptic transmission. This development, together with a combination of different experimental approaches, including patch-clamp recordings and ultrafast agonist applications in brain slices and mammalian cells expressing recombinant GABAA receptor, has begun to shed light on a possible role for subunit composition of synaptic receptors in shaping the physiological characteristics of synaptic transmission. Nowhere else in the central nervous system is the anatomical and developmental profile of GABA receptor heterogeneity as well understood as it is in the cerebellum. This review summarizes advances in the understanding of functional correlates to subunit heterogeneity in the cerebellum relevant for inhibitory synaptic function.

Index Entries

GABA ion channels benzodiazepines transfection receptor subunits allosteric modulators GABAA receptor desensitization IPSC patch-clamp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fagg, G. E. and Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system.Neuroscience 26, 701–719.CrossRefGoogle Scholar
  2. 2.
    Mody, I., De Koninck Y., Otis, T. S., and Soltesz, I. (1994) Bridging the cleft at GABA synapses in the brain.Trends Neurosci. 17, 517–525.PubMedCrossRefGoogle Scholar
  3. 3.
    MacDonald, R. L., and Olsen, R. W. (1994) GABAA receptor channels.Ann. Rev. Neurosci. 17, 569–602.PubMedGoogle Scholar
  4. 4.
    Rabow, L. E., Russek, S. J., and Farb, D. H. (1995) From ion currents to genomic analysis: Recent advances in GABAA receptor research.Synapse 21, 189–274.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones, M. V. and Westbrook, G. L. (1996) The impact of receptor desensitization on fast synaptic transmission.Trends Neurosci. 19, 96–101.PubMedCrossRefGoogle Scholar
  6. 6.
    Sigel, E., Stephenson, F. A., Mamalaki, C., and Barnard, E. A. (1983) A γ-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. Purification and partial characterization.J. Biol. Chem. 258, 6965–6971.PubMedGoogle Scholar
  7. 7.
    Olsen, R. W. and Tobin, A. J. (1990) Molecular biology of GABAA receptors.FASEB J. 4, 1469–1480.PubMedGoogle Scholar
  8. 8.
    Lüddens, H., Korpi, E. R., and Seeburg, P. H. (1995) GABAA/benzodiazepine receptor heterogeneity: Neurophysiological implications.Neuropharmacology 34, 245–254.PubMedCrossRefGoogle Scholar
  9. 9.
    Whiting, P. J., McKernan, R. M., and Wafford, K. A. (1995) Structure and pharmacology of vertebrate GABAA receptor subtypes.Int. Rev. Neurobiol 38, 95–139.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeh, H. H. and Grigorenko, E. V. (1995) Deciphering the native GABAA receptor: Is there hope?J. Neurosci. Res. 41, 567–571.PubMedCrossRefGoogle Scholar
  11. 11.
    Nayeem, N., Green, T. P., Maryin, I. L., and Barnard, E. A. (1994) Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis.J. Neurochem. 62, 815–818.PubMedCrossRefGoogle Scholar
  12. 12.
    Pritchett, D. B., Sontheimer, H., Gorman, C. M., Kettenmann, H., Seeburg, P. H., and Schofield, P. R. (1988) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits.Science 242, 1306–1308.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, C. and Okayama, H.. (1987) High-efficiency transformation of mammalian cells by plasmid DNA.Mol. Cell. Biol. 7, 2745–2752.PubMedGoogle Scholar
  14. 14.
    Verdoorn, T. A., Draghun, A., Ymer, A., Seeburg, P. H., and Sakmann, B. (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition.Neuron 4, 919–928.PubMedCrossRefGoogle Scholar
  15. 15.
    Nusser, Z., Cull-Candy, S., and Farrant, M. (1997) Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude.Neuron 19, 697–709.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies, P. A., Hanna, M. C., Hales, T. G., and Kirkness, E. F. (1997) Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit.Nature 385, 820–823.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu, W. J., Wang, J. F., Krueger, K. E., and Vicini, S. (1996) δ subunit inhibits neurosteroid modulation of GABAA receptors.J. Neurosci. 16, 6648–6656.PubMedGoogle Scholar
  18. 18.
    Saxena, N. C. and Macdonald, R. L. (1994) Assembly of GABAA receptor subunits: Role of the δ subunit.J. Neurosci. 14 7077–7086.PubMedGoogle Scholar
  19. 19.
    Saxena, N. C. and Macdonald, R. L. (1996) Properties of putative cerebellar γ-aminobutyric acid (A) receptor isoforms.Mol. Pharmacol. 49, 567–579.PubMedGoogle Scholar
  20. 20.
    Saxena, N. C. and Macdonald, R. L. (1997) Contrasting actions of lanthanum on different recombinant, γ-aminobutyric acid receptor isoforms expressed in L929 fibroblasts.Mol. Pharmacol. 51, 328–335.PubMedGoogle Scholar
  21. 21.
    Ducic, I., Caruncho, H. J., Zhu, W. J., Vicini, S., and Costa, E. (1995) γ-Aminobutyric acid gating of Cl channels in recombinant GABAA receptors.J. Pharmacol. Exp. Ther. 272, 438–445.PubMedGoogle Scholar
  22. 22.
    Majewska, M. D., Harrison, N. L., Schwartz, R. D. Barker, J. L., and Paul, S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor.Science 232, 1004–1007.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones, A., Korpi, E. R., McKernan, R. M., Pelz, R., Nusser, Z., Makela, R., Mellor, R. M., Pollard, S., Bahn, S., Stephenson, F. A., Randall, A. D., Sieghart, W., Somogyi, P., Smith, A. J. and Wisden, W. (1997) Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits delta subunit expression.J. Neurosci. 17, 1350–1362.PubMedGoogle Scholar
  24. 24.
    Quirk, K., Whiting, P. J., Ragan, C. I., and McKernan, R. M. (1995) Characterization of δ-subunit containing GABAA receptors from rat brain.Eur. J. Pharmacol. 290, 175–181.PubMedCrossRefGoogle Scholar
  25. 25.
    Quirk, K., Gillard, N. P., Ragan, I., Whiting, P. J., and McKernan, R. M. (1994) Model of subunit composition of γ-aminobutyric acid receptor subtypes expressed in rat cerebellum with respect to their α and γ/δ subunits.J. Biol. Chem. 269, 16,020–16,028.Google Scholar
  26. 26.
    McKernan, R. M. and Whiting, P. J. (1996) Which GABAA receptor subtypes really occur in the brain.Trends Neurosci. 19, 139–143.PubMedCrossRefGoogle Scholar
  27. 27.
    Wisden, W., Korpi, E. R., and Bahn, S. (1996) The cerebellum: A model system for studying GABAA receptor diversity.Neuropharmacology 35, 1139–1160.PubMedCrossRefGoogle Scholar
  28. 28.
    Korpi, E. R., Kuner, T., Seeburg, P. H., and Luddens, H. (1995) Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor.Mol. Pharmacol. 47, 283–289.PubMedGoogle Scholar
  29. 29.
    Ma, J. Y. and Narahashi, T. (1993) Enhancement of γ-aminobutyric acid activated chloride channel currents by lanthanum in rat dorsal root ganglion neurons.J. Neurosci. 13, 4872–4879.PubMedGoogle Scholar
  30. 30.
    Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992) The distribution of 13 GABAA subunit mRNAs in the rat brain. I. Telencephanon, diencephalon, mesencephalon.J. Neurosci. 12, 1040–1062.PubMedGoogle Scholar
  31. 31.
    Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum.J. Neurosci. 12, 1063–1076.PubMedGoogle Scholar
  32. 32.
    Laurie, D. J., Wisden, W. and Seeburg, P. H. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development.J. Neurosci. 12, 4151–4172.PubMedGoogle Scholar
  33. 33.
    Thompson, C. L., Bodewitz, G., Stephenson, F. A., and Turner, J. D. (1992) Mapping of GABAA receptor α5, α6 subunit-like immunoreactivity in rat brain.Neurosci. Lett. 144, 53–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Gao, B. and Fritschy, J. M. (1995) Cerebellar granule cells in vitro recapitulate the in vivo pattern of GABAA-receptor subunit expression.Dev. Brain Res. 88, 1–16.CrossRefGoogle Scholar
  35. 35.
    Baude, A., Sequier, J. M., McKernan, R. M., Olivier, K. R., and Somogyi, P. (1992) Differential subcellular distribution of the α6 subunit versus the α1 and β2/3 subunits of the GABAA/benzodiazepine receptor complex in granule cells of the cerebellar cortex.Neuroscience 51, 739–748.PubMedCrossRefGoogle Scholar
  36. 36.
    Nusser, Z., Roberts, J. D. B., Baude, A., Richards, J. G., and Somogyi, P. (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method.J. Neurosci. 15, 2948–2960.PubMedGoogle Scholar
  37. 37.
    Nusser, Z., Sieghart, W., Stephenson, F. A. and Somogyi, P. (1996) The α6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells.J. Neurosci. 16, 103–114.PubMedGoogle Scholar
  38. 38.
    Bovolin, P., Santi, M. R., Memo, M., Costa, E. and Grayson, D. R. (1992) Distinct developmental patterns of expression of rat α1, α5, γ2S, and γ2L γ-aminobutyric acidA receptor subunit mRNAs in vivo and in vitro.J. Neurochem. 59, 62–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Zheng, T., Santi, M. R., Bovolin, P., Marlier, L. N. J-L. and Grayson, D. R. (1993) Developmen tal expression of the α6 GABAA receptor occurs only after cerebellar granule cell migration.Dev. Brain Res. 75, 91–103.CrossRefGoogle Scholar
  40. 40.
    Benke, D., Meterns, S., Trzeciak, A., Gillesen, D. and Mohler, H. (1991) Identification and immunohistochemical mapping of GABAA receptor subtypes containing the δ subunit in rat brain.FEBS Lett. 283, 145–149.PubMedCrossRefGoogle Scholar
  41. 41.
    Muller, T., Fritschy, J. M., Grosche, J., Pratt, G. D., Mohler, H. and Kettenmann, H. (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells.J. Neurosci. 14, 2503–2514.PubMedGoogle Scholar
  42. 42.
    Nusser, Z., Seighart, W., and Somogyi, P. (1997) Segregation of Different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells.Soc. Neurosci. Abs. 48.7 pp 101 Vol. 23.Google Scholar
  43. 43.
    Edwards, F. A., Konnerth, A., and Sakmann, B. (1990) Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: A patch clamp study.J. Physiol. (Lond.) 430, 213–249.Google Scholar
  44. 44.
    Pearce, R. A. (1993) Physiological evidence for two distinct GABAA responses in hippocampus.Neuron 10, 189–200.PubMedCrossRefGoogle Scholar
  45. 45.
    Maconochie, D. J., Zempel, J. M. and Steinbach, J. H. (1994) How quickly can GABAA receptors open?Neuron 12, 61–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Puia, G., Costa, E. and Vicini, S. (1994) Functional diversity of GABA-activated Cl currents in Purkinje versus granule neurons in rat cerebellar slices.Neuron 12, 117–126.PubMedCrossRefGoogle Scholar
  47. 47.
    Koninck, Y. and Mody, I. (1994) Noise analysis of miniature IPSCs in adult rat brain slices: Properties and modulation of synaptic GABAA receptor channels.J. Neurophysiol. 71, 1318–1335.PubMedGoogle Scholar
  48. 48.
    Jones, M. V. and Westbrook, G. L. (1995) Desensitization states prolong GABAA channels response to brief agonist pulses.Neuron 15, 181–191.PubMedCrossRefGoogle Scholar
  49. 49.
    Jones, M. V. and Westbrook, G. L. (1997) Shaping of inhibitory postsynaptic currents by endogenous calcineurin activity.J. Neurosci. 17, 7626–7633.PubMedGoogle Scholar
  50. 50.
    Tia, S., Wang, J. F., Kotchabhakdi, N., and Vicini, S. (1996) Developmental change of inhibitory synaptic currents in cerebellar granule neurons: Role of GABAA receptor α6 subunit.J. Neurosci. 16, 3630–3640.PubMedGoogle Scholar
  51. 51.
    Brickley, S. G., Cull-Candy, S. G. and Farrant, M. (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors.J. Physiol. 497, 753–759.PubMedGoogle Scholar
  52. 52.
    Galarreta, M. and Hestrin, S. (1997) Properties of GABAA receptors underlying inhibitory synaptic currents in neocortical pyramidal neurons.J. Neurosci. 17, 7220–7227.PubMedGoogle Scholar
  53. 53.
    Mellor, J. R. and Randall, A. D. (1997) Frequency-dependent actions of benzodiazepines on GABAA receptors in cultured murine cerebellar granule cells.J. Physiol. (Lond.) 503, 353–369.CrossRefGoogle Scholar
  54. 54.
    Hollrigel, G. S. and Soltesz, I. (1997) Slow kinetics of miniature IPSCs during early postnatal development in granule cells of the dentate gyrus.J. Neurosci. 17, 5119–5128.PubMedGoogle Scholar
  55. 55.
    Zhang, S. J., Huguenard, J. R., and Prince, D. A. (1997) GABAA receptor-mediated Cl currents in rat thalamic reticular and relay neurons.J. Neurophysiol. 78, 2280–2266.PubMedGoogle Scholar
  56. 56.
    Jonas, P. and Spruston, N. (1994) Mechanisms shaping glutamate-medicated excitatory post-synaptic currents in the CNS.Curr. Opin. Neurobiol. 4, 366–372.PubMedCrossRefGoogle Scholar
  57. 57.
    Verdoorn, T. A. (1994) Formation of heteromeric γ-aminobutyric acid type A receptor containing two different α subunits.Mol. Pharmacol. 25, 475–480.Google Scholar
  58. 58.
    Gingrich, K. J., Roberts, W. A. and Kass, R. S. (1995) Dependence of the GABAA receptor gating kinetics on the alpha-subunit isoform: Implications for structure-function relations and synaptic transmission.J. Physiol. 489, 529–543.PubMedGoogle Scholar
  59. 59.
    Tia, S., Wang, J. F., Kotchabhakdi, N., and Vicini, S. (1996) Distinct deactivation and desensitization kinetics of recombinant GABAA receptors.Neuropharmacology 35, 1375–1382.PubMedCrossRefGoogle Scholar
  60. 60.
    Konnerth, A., Llano, I., and Armstrong, C. M. (1990) Synaptic currents in cerebellar Purkinje cells.Proc. Natl. Acad. Sci. USA 87, 2662–2665.PubMedCrossRefGoogle Scholar
  61. 61.
    Vincent, P. Armstrong, C. M. and Marty, A. (1992) Inhibitory synaptic currents in rat cerebellar Purkinje cells: Modulation by postsynaptic depolarization.J. Physiol. (Lond.) 456, 453–471.Google Scholar
  62. 62.
    Llano, I. and Gerschenfeld, H. M. (1993) Inhibitory synaptic currents in stellate cells of rat cerebellar slices.J. Physiol. (Lond.) 468, 177–200.Google Scholar
  63. 63.
    Auger, C. and Marty, A. (1997) Heterogeneity of functional synaptic parameters among single release sites.Neuron 19, 139–150.PubMedCrossRefGoogle Scholar
  64. 64.
    Rossi, D. J. and Hamann, M. (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry.Neuron 20, 783–795.PubMedCrossRefGoogle Scholar
  65. 65.
    Vicini, S., Wroblewski, J. T. and Costa, E. (1986) Pharmacological modulation of GABAergic transmission in cultured cerebellar ceurons.Neuropharmacology 25, 207–211.PubMedCrossRefGoogle Scholar
  66. 66.
    Wall, M. J. and Usowicz, M. M. (1997) Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum.Eur. J. Neurosci. 9, 533–548.PubMedCrossRefGoogle Scholar
  67. 67.
    Korpi, E. R., Kleingoor, C., Kettenmann, H. and Seeburg, P. H. (1993) Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor.Nature 361, 356–359.PubMedCrossRefGoogle Scholar
  68. 68.
    Homanics, G. E., Ferguson, C., Quinlan, J. J., Daggett, J., Snyder, K., Lagenaur C., Mi, Z. P., Wang, X. H., Grayson, D. R. and Firestone, L. L. (1997) Gene knockout of the α6 subunit of the γ-aminobutyric acid type A receptor: Lack of effect on responses to ethanol, pentobarbital, and general anesthetics.Mol. Pharmacol. 51, 588–596.PubMedGoogle Scholar
  69. 69.
    Kleingoor, C., Wieland, H. A., Korpi, E. R., Seeburg, P. H. and Kettenmann, H. (1993) Current potentiation by diazepam but not GABA sensitivity is determined by a single histidine residue.Neuro Reports 4, 187–190.Google Scholar
  70. 70.
    Ueno, S., Zempel, J. M., and Steinbach, J. H. (1996) Differences in the expression of GABA(A) receptors between functionally innervated and non-innervated granule neurons in neonatal rat cerebellar cultures.Brain Res. 714, 49–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhu, W. J., Wang, J. F., Corsi, L., and Vicini, S. (1998) Lanthanum-mediated modification of GABAA receptor deactivation, desensitization and inhibitory synaptic currents in rat cerebellar neurons.J. Physiol. 5113, 647–661.CrossRefGoogle Scholar
  72. 72.
    Yakel, J. L. (1997) Calcineurin regulation of synaptic function: From ion channels to transmitter release and gene transcription.Trends Pharmacol. Sci. 18, 124–134.PubMedCrossRefGoogle Scholar
  73. 73.
    Segal, M., and Barker, J. L. (1984) Rat hippocampal neurons in culture: Voltage-clamp analysis of inhibitory connections.J. Neurophysiol. 52, 469–487.PubMedGoogle Scholar
  74. 74.
    Harrison, N. L., Vicini, S. and Barker, J. L. (1987) A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons.J. Neurosci. 7, 604–609.PubMedGoogle Scholar
  75. 75.
    Vicini, S., Alho, H., Costa, E., Mienville, J. M., Santi, M. R. and Vaccarino, F. M. (1986) Modulation of γ-aminobutyric acid mediated inhibitory synaptic currents in dissociated cortical cell cultures.Proc. Natl. Acad. Sci. USA 83, 9269–9273.PubMedCrossRefGoogle Scholar
  76. 76.
    Gyenes, M., Wang, Q., Gibbs, T. T. and Farb, D. H. (1994) Phosphorylation factors control neurotransmitter and neuromodulator actions at the gamma-aminobutyric acid type A receptor.Mol. Pharmacol. 46, 542–549.PubMedGoogle Scholar
  77. 77.
    Zhu, W. J. and Vicini, S. (1997) Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states.J. Neurosci. 17, 4022–4031.PubMedGoogle Scholar
  78. 78.
    Poisbeau, P., Williams, S. R., and Mody, I. (1997) Silent GABAA synapses during flurazepam withdrawal are region-specific in the hippocampal formation.J. Neurosci. 17, 3467–3475.PubMedGoogle Scholar
  79. 79.
    Friedman, L. K., Gibbs, T. T. and Farb, D. H. (1996) γ-Aminobutyric acidA receptor regulation: Heterologous uncoupling of modulatory site interactions induced by chronic steroid, barbiturate, benzodiazepine, or GABA treatment in culture.Brain Res. 707, 100–109.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Stefano Vicini
    • 1
  1. 1.Department of Physiology and BiophysicsGeorgetown University Medical CenterWashington, D C

Personalised recommendations