Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 48, Issue 2, pp 189–198 | Cite as

On the bulk viscosity of relativistic matter

  • V. Canuto
  • S. -H. Hsieh
Article

Summary

An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted results of Iso, Mori and Namiki.

Об объемной вязкости релятивистского вещества

Резюме

Из формулы Кубо выводится выражение для коэффициента объемной вязкости. Таким образом, модель теории поля для системы взаимодействующих скалярных частиц предполагает, что при высоких температурах объемная вязкость стремится к нулю, в противоположность часто цитируемому результату Изо, Мори и Намики.

Riassunto

Si deriva dalla formula di Kubo un–espressione per il coefficiente della viscosità di volume sulle basi della traccia del tensore idrodinamico di sforzo-energia. Questa, insieme con un modello di teoria dei campi di un sistema interagente di particelle scalari, suggerisce che ad alte temperature la viscosità di volume scenda a zero, contrariamente agli spesso citati risultati di Iso, Mori e Namiki.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. L. Schucking andE. A. Spiegel:Comm. Astrophys. Space Sci.,1, 121 (1970).ADSGoogle Scholar
  2. (2).
    C. Iso, K. Mori andM. Namiki:Prog. Theor. Phys.,22, 403 (1959).ADSCrossRefGoogle Scholar
  3. (3).
    H. Mori:Journ. Phys. Soc. Japan,11, 1029 (1956).ADSCrossRefGoogle Scholar
  4. (4).
    H. Mori:Prog. Theor. Phys.,28, 36 (1962).Google Scholar
  5. (5).
    J. M. Luttinger:Phys. Rev.,135, A 1505 (1964); J. A. McLennen:Advances in Chemical Physics, Vol. 5, edited byO. Prigogine (New York, N. Y., 1963);D. N. Zubarev:Nonequilibrium Statistical Thermodynamics (New York, N. Y., 1974).MathSciNetADSCrossRefGoogle Scholar
  6. (6).
    E. L. Feidberg:Hydrodynamic theory of multiple production of particles, inQuantum Field Theory and Hydrodynamics, edited byD. V. Skobultsyn,Lebedev Physics Institute Series, Vol.29 (New York, N. Y., 1967).Google Scholar
  7. (7).
    W. Israel:The relativistic Boltzmann equation, inGeneral Relativity Papers in Honour of Synge, edited byL. O–Raifeartaigh (Oxford, 1972);J. M. Stewart:Nonequilibrium relativistic kinetic theory, inLecture Notes in Physics, Vol.10 (Berlin, 1971);J. L. Anderson andH. E. Witting:Physica,74, 466 (1974).Google Scholar
  8. (8).
    J. A. McLennen:Advances in Chemical Physics, Vol.5, edited byO. Prigogine (New York, N. Y., 1963).Google Scholar
  9. (9).
    S. Fujita:Journ. Math. Phys.,3, 359 (1962).ADSCrossRefGoogle Scholar
  10. (10).
    J. A. McLennen andR. J. Swenson:Journ. Math. Phys.,4, 1529 (1963).ADSGoogle Scholar
  11. (11).
    S. Weinberg:Astrophys. Journ.,168, 175 (1971).ADSCrossRefGoogle Scholar
  12. (13).
    C. G. Callan {jrjr.},S. Coleman andR. Jackiw:Ann. of Phys.,59, 42 (1970).MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. (15).
    R. Jackiw:Field-theoretic investigations in current algebra, inLectures on Current Algebra and its Applications, edited byS. B. Treiman,R. Jackiw andD. J. Gross (Princeton, N.J., 1972).Google Scholar

Copyright information

© Società Italiana di Fisica 1978

Authors and Affiliations

  • V. Canuto
    • 1
    • 2
  • S. -H. Hsieh
    • 1
  1. 1.NASA Goddard Institute for Space StudiesGoddard Space Flight CenterNew York
  2. 2.Department of PhysicsCCNYNew York

Personalised recommendations