Advertisement

Mathematical Notes

, Volume 65, Issue 5, pp 654–657 | Cite as

Ergodic theorems for actions of free groups and free semigroups

  • R. I. Grigorchuk
Brief Communications

Key words

ergodic theory free group action stationary measure Cesaro averages entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnol’d and A. L. Krylov,Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],4, No. 1, 1–5 (1962).Google Scholar
  2. 2.
    A. A. Tempel’man,Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],176, No. 2, 190–193 (1967).MathSciNetGoogle Scholar
  3. 3.
    Y. Guivarc’h,Comptes Rendus Acad. Sci.,268, 1020 (1969).zbMATHMathSciNetGoogle Scholar
  4. 4.
    R. I. Grigorchuk, “Pointwise ergodic theorem for free group actions,” in:XII School on the Theory of Operators in Functional Spaces. Theses of Reports. Part 1 [in Russian], Tambov (1987), p. 57.Google Scholar
  5. 5.
    A. Nevo and E. M. Stein,Acta Math.,173, 135–154 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Bufetov, “Topological entropy of free semigroup actions and skew-product transformations,”J. Dynamical and Control Systems,5, 137–145 (1999).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • R. I. Grigorchuk
    • 1
  1. 1.V. A. Steklov Mathematics InstituteRussian Academy of SciencesUSSR

Personalised recommendations