Molecular Neurobiology

, Volume 20, Issue 2–3, pp 125–142 | Cite as

Ubiquitin-mediated proteolysis in learning and memory

  • Daniel G. Chain
  • James H. Schwartz
  • Ashok N. Hegde


Sensitization of defensive reflexes inAplysia is a simple behavioral paradigm for studying both short- and long-term memory. In the marine mollusk, as in other animals, memory has at least two phases: a short-term phase lasting minutes and a long-term phase lasting several days or longer. Short-term memory is produced by covalent modification of pre-existing proteins. In contrast, long-term memory needs gene induction, synthesis of new protein, and the growth of new synapses. The switch from short-term (STF) to long-term facilitation (LTF) inAplysia sensory neurons requires not only positive regulation through gene induction, but also the specific removal of several inhibitory proteins. One important inhibitory protein is the regulatory (R) subunit of the cAMP-dependent protein kinase (PKA). Degradation of R subunits, which is essential for initiating long-term stable memory, occurs through the ubiquitin-proteasome pathway.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberini C. M., Ghirardi M., Metz R., and Kandel E. R. (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation inAplysia.Cell 76, 1099–1114.PubMedGoogle Scholar
  2. Albrecht U., Sutcliffe J. S., Cattanch B. M., Beechey C. V., Armstrong D., Eichele G., and Beaudet A. L. (1997) Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons.Nat. Genet. 17, 75–78.PubMedGoogle Scholar
  3. Alkalay I., Yaron A., Hatzubai A., Orian A., Ciechanover A., and Ben-Neriah Y. (1995) Stimulation-dependent IκB alpha phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway.Proc. Natl. Acad. Sci. USA 92, 10,599–10,603.Google Scholar
  4. Amerik A. Y., Swaminathan S., Krantz B. A., Wilkinson K. D., and Hochstrasser M. (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubp1 modulates rates of protein degradation by the proteasome.EMBOJ. 16, 4826–4838.Google Scholar
  5. Arnold J., Dawson S., Fergusson J., Lowe J., Landon M., and Mayer R. J. (1998) Ubiquitin and its role in neurodegeneration.Prog. Brain Res. 117, 23–34.PubMedGoogle Scholar
  6. Bacskai B. J., Hochner B., Mahaut-Smith M., Adams S. R., Kaang B. K., Kandel E. R., and Tsien R. Y. (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits inAplysia sensory neurons.Science 260, 222–226.PubMedGoogle Scholar
  7. Bailey C. H. and Kandel E. R. (1993) Structural changes accompanying memory storage.Annu. Rev. Physiol. 55, 397–426.PubMedGoogle Scholar
  8. Baldwin A. S., Jr. (1996) The NFκB and IκB proteins: new discoveries and insights.Annu. Rev. Immunol. 14, 649–683.PubMedGoogle Scholar
  9. Barnhart W. J., Spencer J. J., and Nestler E. J. (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior.J. Neurosci. 18, 1848–1859.PubMedGoogle Scholar
  10. Bartsch D., Ghirardi M., Skehel P. A., Karl K. A., Herder S. P., Chen M., et al. (1995)Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change.Cell 83, 979–992.PubMedGoogle Scholar
  11. Bartsch D., Casadio A., Karl K. A., Serodio P., and Kandel E. R. (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation.Cell 95, 211–223.PubMedGoogle Scholar
  12. Barzilai A., Kennedy T.E., Sweatt J. D., and Kandel E. R. (1989) 5HT modulates protein synthesis and the expression of specific proteins during long-term facilitation inAplysia sensory neurons.Neuron 2, 1577–1586.PubMedGoogle Scholar
  13. Bergold P. J., Sweatt J. D., Winicov I., Weiss K. R., Kandel E. R., and Schwartz J. H. (1990) Protein synthesized during acquisition of long-term facilitation is needed for the persistent loss of regulatory subunits of theAplysia cAMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 87, 3788–3791.PubMedGoogle Scholar
  14. Bergold P. J., Beushausen S.A., Sacktor T.C., Cheley S., Bayley H., and Schwartz J. H. (1992) Identification of a regulatory subunit of the cAMP-dependent protein kinase downregulated inAplysia sensory neurons during long-term sensitization.Neuron 8, 387–397.PubMedGoogle Scholar
  15. Boundy V. A., Chen J., and Nestler E.J. (1998) Regulation of cAMP-dependent protein kinase subunit expression in CATH.a and SH-SY5Y cells.J. Pharmacol. Exper. Ther. 286, 1058–1065.Google Scholar
  16. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schultz G., and Silva A. G. (1994) Deficient long-term memory in mice with a targeted mutation of a cAMP-responsive element-binding protein.Cell 79, 59–68.PubMedGoogle Scholar
  17. Braun A. P. and Schulman H. (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function.Annu. Rev. Physiol. 57, 417–445.PubMedGoogle Scholar
  18. Byrne J. H., Zwartjes R., Homayouni R., Critz S. S., and Eskin A. (1993) Roles of second messenger pathways in neuronal plasticity and in learning and memory. Insights gained fromAplysia.Adv. Second Messengers Phosphoprotein Res. 27, 47–108.Google Scholar
  19. Byrne J. H. and Kandel E. R. (1996) Presynaptic facilitation revisited: state and time dependence.J. Neurosci. 16, 425–435.PubMedGoogle Scholar
  20. Chain D. G., Hegde A. N., Yamamoto N., Liu-Marsh B., and Schwartz J. H. (1995) Persistent activation of cAMP-dependent protein kinase by regualted proteolysis suggests a neuron-specific function of the ubiquitin system inAplysia.J. Neurosci. 15, 7592–7603.PubMedGoogle Scholar
  21. Chain D. G., Casadio A., Schacher S., Hegde A. N., Valbrun M., Yamamoto N., et al. (1999) Mechanisms for generating the autonomous cAMP-dependent protein kinase required for longterm facilitation inAplysia.Neuron 22, 147–156.PubMedGoogle Scholar
  22. Chen Z. J. and Maniatis T. (1998) Role of the ubiquitin-proteasome pathway in NF-κB activation, inUbiquitin and the Biology of the Cell. (Peters J.-M., Harris J. R., and Finley D., eds.), Plenum Press, New York, NY, pp. 303–318.Google Scholar
  23. Clegg C. H. and McKnight G. S. (1988) Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 85, 3703–3707.PubMedGoogle Scholar
  24. Cohen-Fix O., Peters J. M., Kirschner M. W., and Koshland D. (1996) Anaphase initiation inSaccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p.Genes Dev. 12, 1871–1883.Google Scholar
  25. Coux O., Tanaka K., and Goldberg A. L. (1996) Structure and functions of the 20 S and 26 S proteasomes.Annu. Rev. Biochem. 65, 801–847.PubMedGoogle Scholar
  26. Crick F. (1984) Memory and molecular turnover.Nature 312, 101, 102.PubMedGoogle Scholar
  27. Dale N. and Kandel E. R. (1993) L-glutamate may be the fast excitatory transmitter ofAplysia sensory neurons.Proc. Natl. Acad. Sci. USA 90, 7163–7167.PubMedGoogle Scholar
  28. Dash P. K., Hochner B., and Kandel E. R. (1990) Injection of the cAMP-responsive element into the nucleus ofAplysia sensory neurons blocks long-term facilitation.Nature 345, 718–721.PubMedGoogle Scholar
  29. Dawson S. P., Arnold J. E., Mayer N. J., Reynolds S. E., Billet M. A., Gordon C., et al. (1995) Developmental changes of the 26S proteasome in abdominal intersegmental muscles ofManduca sexta during programmed cell death.J. Biol. Chem. 270, 1850–1858.PubMedGoogle Scholar
  30. DeMartino, G. N. and Slaughter C. A. (1999) The proteasome, a novel protease regulated by multiple mechanisms.J. Biol. Chem. 32, 22,123–22,126.Google Scholar
  31. De Mot R., Nagy I., Walz J., and Baumeister W. (1999) Proteasomes and other self-compartmentalizing proteases in prokaryotes.Trends Microbiol. 2, 88–92.Google Scholar
  32. Dohrman D. P., Diamond I., and Gordon A. S. (1996) Ethanol causes translocation of cAMP-dependent protein kinase catalytic subunit to the nucleus.Proc. Natl. Acad. Sci. USA 93, 10,217–10,221.Google Scholar
  33. Driscoll J., Brown M. G., Finley D., and Monaco J. J. (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome.Nature 365, 262–264.PubMedGoogle Scholar
  34. Emptage N. J. and Carew T. J. (1993) Long-term synaptic facilitation in the absence of short-term facilitation inAplysia neurons.Science 262, 253–256.PubMedGoogle Scholar
  35. Eytan E., Armon T., Heiler H., Beck S., and Hershko A. (1993) Ubiquitin-C-terminal hydrolase activity associated with 26 S protease complex.J. Biol. Chem. 268, 4668–4674.PubMedGoogle Scholar
  36. Feldman R. M., Correll C. C., Kaplan K. B., and Deshaies R. J. (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullen catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p.Cell 91, 221–230.PubMedGoogle Scholar
  37. Fraser I. D. C. and Scott J. D. (1999) Modulation of ion channels: a “current” view of AKAPs.Neuron 23, 423–426.PubMedGoogle Scholar
  38. Gaczynska M., Rock K. L., and Goldberg A. L. (1995) γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes.Nature 365, 264–267.Google Scholar
  39. Ghirardi M., Montarolo P. G., and Kandel E. R. (1995) A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse ofAplysia.Neuron 14, 413–420.PubMedGoogle Scholar
  40. Glotzer M., Murray A. W., and Kirschner M. W. (1991) Cyclin is degraded by the ubiquitin pathway.Nature 349, 132–138.PubMedGoogle Scholar
  41. Goelet P., Castellucci V. F., Schacher S., and Kandel E. R. (1986) The long and the short of long-term memory: a molecular framework.Nature 322, 419–422.PubMedGoogle Scholar
  42. Gonen H., Smith C. E., Siegel N. R., Kahana C., Merrick W. C., Chakraburtty K., et al. (1996) Protein synthesis elongation factor EF-1 α is essential for ubiquitin-dependent degradation of certain N α-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu.Proc. Natl. Acad. Sci. USA 91, 7647–7652.Google Scholar
  43. Greenberg S. M., Castellucci V. F., Bayley H., and Schwartz J. H. (1987) A molecular mechanism for long-term sensitization inAplysia.Nature 329, 62–65.PubMedGoogle Scholar
  44. Gupta K., Chevrette M., and Gray D. A. (1994) TheUnp proto-oncogene encodes a nuclear protein.Oncogene 9, 733–741.Google Scholar
  45. Haas A. L., Baboshina O., Williams B., and Schwartz L. M. (1995) Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle.J. Biol. Chem. 16, 9407–9412.Google Scholar
  46. Haas A. L. and Siepmann T. J. (1997) Pathways of ubiquitin conjugation.FASEB J. 11, 1257–1268.PubMedGoogle Scholar
  47. Hadari T., Warms J. V. B., Rose I. A., and Hershko A. (1992) A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation.J. Biol. Chem. 267, 719–727.PubMedGoogle Scholar
  48. Haldeman M. T., Xia G., Kasperek E. M., and Pickart C. M. (1997) Structure and function of ubiquitin conjugating enzyme E2-25K the tail is a core-dependent activity element.Biochemistry 36, 10,526–10,537.Google Scholar
  49. Hegde A. N., Goldberg A. L., and Schwartz J. H. (1993) Regulatory subunits of the cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity.Proc. Natl. Acad. Sci. USA 90, 7436–7440.PubMedGoogle Scholar
  50. Hegde A. N., Inokuchi K., Pei W., Casadio A., Ghirardi M., Chain D. G., et al. (1997) Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation inAplysia.Cell 89, 115–126.PubMedGoogle Scholar
  51. Hegde A. N., Casadio A., Martin K. C., Inokuchi K., Pei W., Giustetto M., et al. (1999) Induction of the polypeptide chain elongation factor EF1α is required for late long-term facilitation inAplysia.Soc. Neurosci. Abstr. 25, 1815.Google Scholar
  52. Hegde A. N., Broome B. M., Qiang M., and Schwartz J. H. (2000) Structure and expression of theAplysia polyubiquitin gene.Mol. Brain Res. 76, 424–428.PubMedGoogle Scholar
  53. Heilker R., Freuler F., Vanek M., Pulfer R., Kobel T., Peter J. et al. (1999) The kinetics of association and phosphorylation of IκB isoforms by IκB kinase 2 correlate with their cellular regulation in human endothelial cells.Biochemistry 38, 6231–6238.PubMedGoogle Scholar
  54. Hershko A., Heller H., Elias S., and Ciechanover A. (1983) Components of ubiquitin-protein ligase system.J. Biol. Chem. 258, 8206–8214.PubMedGoogle Scholar
  55. Hershko A. and Ciechanover A. (1998) The ubiquitin system.Annu. Rev. Biochem. 67, 425–479.PubMedGoogle Scholar
  56. Hochstrasser M. and Kornitzer D (1998) Ubiquitin-dependent transcription regulators, in:Ubiquitin and the Biology of the Cell (Peters J.-M., Harris J. R., and Finley D., eds), Plenum, New York, pp. 279–298.Google Scholar
  57. Huang Y., Baker R. T., and Fischer-Vize J. A. (1995) Control of cell, fate by a deubiquitnating enzyme encoded by the fat facets gene.Science 270, 1828–1831.PubMedGoogle Scholar
  58. Huibregtse J. M., Maki C. G., and Howley P. M. (1998) Ubiquitination of the p53 tumor suppressor, inUbiquitin and the Biology of the Cell (Peters J.-M., Harris J. R., and Finley D., eds.), Plenum, New York, pp. 324–339.Google Scholar
  59. Impey S., Mark M., Villacres E. C., Poser S., Chavkin C., and Storm D. R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus.Neuron 16, 973–982.PubMedGoogle Scholar
  60. Inoue M., Mishimoto A., Takai Y., and Nishizuka Y. (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues.J. Biol. Chem. 252, 7610–7616.PubMedGoogle Scholar
  61. Jasperson S. L., Charles J. F., and Morgan D. O. (1999) Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14.Curr. Biol. 9, 227–236.Google Scholar
  62. Jentsch S. (1992) The ubiquitin-conjugating system.Annu. Rev. Genet. 26, 179–207.PubMedGoogle Scholar
  63. Jiang Y. H., Armstrong D., Albrecht U., Atkins C. M., Noebels J. L., Eichele G., et al. (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.Neuron 21, 799–811.PubMedGoogle Scholar
  64. Kaang B. K., Kandel E. R., and Grant S. G. (1993) Activation of cAMP-responsive genes by stimuli that produce long-term facilitation inAplysia sensory neurons.Neuron 10, 427–435.PubMedGoogle Scholar
  65. Kalderon D. and Rubin G. (1998) Isolation and characterization ofDrosophila cAMP-dependent protein kinase genes.Genes Dev. 2, 1539–1556.Google Scholar
  66. Kandel E. R. and Schwartz J. H. (1982) Molecular biology of learning: modulation of transmitter release.Science 218, 433–443.PubMedGoogle Scholar
  67. Kawahara H. and Yokosawa H. (1992) Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidianHalocynthia roretzi.Dev. Biol. 151, 27–33.PubMedGoogle Scholar
  68. Kawahara H. and Yokosawa H. (1994) Intracellular calcium mobilization regulates the activity of 26 S proteasome during the metaphase-anaphase transition in the ascidian meiotic cell cycle.Dev. Biol. 166, 623–633.PubMedGoogle Scholar
  69. King R. W., Peters J. M., Tugendreich S., Rolfe M., Hieter P., and Kirschner M. W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B.Cell 81, 279–288.PubMedGoogle Scholar
  70. Kishino T., Lalande M., and Wagstaff J. (1997) UBE3A/E6-AP mutations cause Angelman syndrome.Nat. Genet. 15, 70–73, 411.PubMedGoogle Scholar
  71. Kopito R. R. (1999) Biosythesis and degradation of CFTR.Phys. Rev. 79, Suppl., S167-S173.Google Scholar
  72. Kornitzer D. and Ciechanover A. (2000) Modes of regulation of ubiquitin-mediated protein degradation.J. Cell. Physiol. 182, 1–11.PubMedGoogle Scholar
  73. Kotani S., Tugendreich S., Fujii M., Jorgensen P.-M., Watanabe N., Goog C., et al. (1998) PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression.Mol. Cell 1, 371–380.PubMedGoogle Scholar
  74. Krek W. (1998) Proteolysis and the G1-S transition: the SCF connection.Curr. Opin. Genes Dev. 8, 36–42.Google Scholar
  75. Kroll M., Margottin F., Kohl A., Renard P., Durand H., Concordet J. P., et al. (1999) Inducible degradation of IκBα by the proteasome requires interaction with the F-box protein h-β TrCP.J. Biol. Chem. 274, 7941–7945.PubMedGoogle Scholar
  76. Lahav-Baratz S., Sudakin V., Ruderman J. V., and Hershko A. (1995) Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase.Proc. Natl. Acad. Sci. USA 92, 9303–9307.PubMedGoogle Scholar
  77. Lam Y. A., Xu W., DeMartino G. N., and Cohen R. E. (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome.Nature 385, 737–740.PubMedGoogle Scholar
  78. Lane-Ladd S. B., Pineda J., Boundy V. A., Pfeuffer T., Krupinski J., Aghajanian G. K., and Nestler E. J. (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence.J. Neurosci. 17, 7890–7901.PubMedGoogle Scholar
  79. Larsen C. N., Krantz B. A., and Wilkinson K. D. (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases.Biochem. 10, 3358–3368.Google Scholar
  80. Lecker S. H., Solomon V., Mitch W. E., and Goldberg A. L. (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states.J. Nutr. 129, Suppl., 227S-237S.PubMedGoogle Scholar
  81. Lisman J. E. (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase.Proc. Natl. Acad. Sci. USA 82, 3055–3057.PubMedGoogle Scholar
  82. Lowe J., Mayer R. J., and Landon M. (1993) Ubiquitin in neurogenitive diseases.Brain Path. 3, 55–65.Google Scholar
  83. Martin K. C., Michael D., Rose J. C., Barad M., Casadio A., Zhu H., and Kandel E. R. (1997) MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation inAplysia.Neuron 6, 899–912.Google Scholar
  84. Matsuura T., Sutcliffe J. S., Fang P., Galjaard R. J., Jiang Y. H., Benton C. S., et al. (1997)De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.Nat. Genet. 15, 74–77.PubMedGoogle Scholar
  85. Mauelshagen J., Parker G. R., and Carew T. J. (1996) Dynamics of induction and expression of long term synaptic facilitation inAplysia.J. Neurosci. 16, 7099–7108.PubMedGoogle Scholar
  86. May M. J. and Ghosh S. (1998) Signal transduction through NFκB.Immunol. Today 19, 80–88.PubMedGoogle Scholar
  87. Medina R. Wing S. S., and Goldberg A. L. (1995) Increase in levels of polyubiquitin and protea-some mRNA in skeletal muscle during starvation and denervation atrophy.Biochem. J. 307, 631–637.PubMedGoogle Scholar
  88. Mercer A. R., Emptage N. J., and Carew T. J. (1991) Pharmacological dissociation of modulatory effects of serotonin inAplysia sensory neurons.Science 254, 1811–1813.PubMedGoogle Scholar
  89. Mitch W. E. and Goldberg A. L. (1996) Mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway.N. Engl. J. Med. 335, 1897–1905.PubMedGoogle Scholar
  90. Muralidhar M. G. and Thomas J. B. (1993) TheDrosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes.Neuron 11, 253–266.PubMedGoogle Scholar
  91. Musti A. M., Treier M., and Bohmann D. (1997) Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases.Science 275, 400–402.PubMedGoogle Scholar
  92. Naviglio S., Mattecucci C., Matoskova B., Nagase T., Nomura N., De Fiore P. P., and Draetta G. F., (1998) UBPY: a growth-regulated human ubiquitin isopeptidase.EMBOJ. 16, 3241–3250.Google Scholar
  93. Nishizawa M., Kawasumi M., Fujino M., and Toh-e A. (1998) Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation.Mol. Biol. Cell. 9, 2393–2405.PubMedGoogle Scholar
  94. Osten P., Valsamis L., Harris A., and Sacktor T. C. (1996) Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation.J. Neurosci. 8, 2444–2451.Google Scholar
  95. Oh C. E., McMahon R., Benzer S., and Tanouye M. A. (1994)Bendless, aDrosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog.J. Neurosci. 14, 3166–3179.PubMedGoogle Scholar
  96. Orlowski R. Z. (1999) The role of the ubiquitin-proteasome pathway in apoptosis.Cell Death Different.4, 303–313.Google Scholar
  97. Pagano M. (1997) Cell cycle regulation by the ubiquitin pathway,FASEB J. 11, 1067–1075.PubMedGoogle Scholar
  98. Pandey S. C. (1998) Neuronal signaling systems and ethanol dependence.Mol. Neurobiol. 17, 1–15.PubMedGoogle Scholar
  99. Papa F. R. and Hochstrasser M. (1993) The yeastDOA4 gene encodes a deubiquitinating enzyme related to a product of the humantre-2 oncogene.Nature 366, 313–319.PubMedGoogle Scholar
  100. Papa F. R., Amerik A. Y., and Hochstrasser M. (1999) Interaction of the Doa4 deubiquitinating enzyme with the yeast 26 S proteasome.Mol. Biol. Cell 10, 741–756.PubMedGoogle Scholar
  101. Pei W. (1998) Ubiquitin carboxyl-terminal hydrolase and long-term facilitation inAplysia. Dissertation Columbia University, New York, NY.Google Scholar
  102. Peters J.-M., King R. W., Hoog C., and Kirschner M. W. (1996) Identification of BIME as a subunit of the anaphase-promoting complex.Science 274, 1199–1201.PubMedGoogle Scholar
  103. Peters J.-M., Harris J. R., and Finley D. (1989a)Ubiquitin and the Biology of the Cell. Plenum Press, New York, NY.Google Scholar
  104. Peters J.-M., King R. W., and Deshaies R. J. (1998b) Cell cycle control by ubiquitin-dependent proteolysis, inUbiquitin and the Biology of the Cell (Peters J.-M., Harris J. R., and Finley D., eds.), Plenum Press, New York, NY, pp. 345–378.Google Scholar
  105. Rechsteiner M. (1990) PEST sequences are signals for rapid intracellular proteolysis.Sem. Cell Biol. 1, 433–440.Google Scholar
  106. Rechsteiner M. and Rogers S. W. (1996) PEST sequences and regulation by proteolysis.Trends Biochem. Sci. 21, 267–271.PubMedGoogle Scholar
  107. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., et al. (1994) Inhibitors of the protea-some block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.Cell 78, 761–771.PubMedGoogle Scholar
  108. Rock K. L. and Goldberg A. L. (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides.Annu. Rev. Immun. 17, 739–779.PubMedGoogle Scholar
  109. Rogers S., Wells R., and Rechsteiner M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis.Science 234, 364–368.PubMedGoogle Scholar
  110. Sacktor T. C., Osten P., Valsamis H. Jiang X, Naik M. U., and Sublette E. (1993) Persistent activation of the ζ isoform of protein kinase C in the maintenance of long-term potentiation.Proc. Natl. Acad. Sci. USA. 18, 8342–8346.Google Scholar
  111. Saitoh T. and Schwartz J. H. (1985) Phosphorylation-dependent subcellular translocation of Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme inAplysia neurons.J Cell. Biol. 100, 835–842.PubMedGoogle Scholar
  112. Schafe G. E., Nadel N. V., Sullivan G. M., Harris A., and LeDoux J. E. (1999) Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase.Learn. Memory. 6, 97–100.Google Scholar
  113. Schapp D., Hsuan J., Totty N., and Parker P. J. (1990) Proteolytic activation of protein kinase C-ε.Eur. J. Biochem. 191, 431–435.Google Scholar
  114. Scheffner M., Huibregtse J. M., and Howley P. M. (1994) Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53.Proc. Natl. Acad. Sci. USA 91, 8797–8801.PubMedGoogle Scholar
  115. Scheffner M., Nuber U., and Huibregtse J. M. (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade.Nature 373, 81–83.PubMedGoogle Scholar
  116. Schulman H. and Hyman S. E. (1998) PKA, CaM kinase II and PKC are cognitive kinases, inFundamental Neuroscience (Zigmond M. J., Bloom F. E., Landis S. C., and Squire L. R., eds.), Academic Press, Burlington, MA, pp. 292–295.Google Scholar
  117. Schwab M., Lutum A. S., and Seufert W. (1997) Yeast Hct1 is a regulator of C1b2 cyclin proteolysis.Cell 90, 683–693.PubMedGoogle Scholar
  118. Schwartz A. L. and Ciechanover A. (1999) The ubiquitin proteasome pathway and pathogenesis of human diseases.Annu. Rev. Med. 50, 57–74.PubMedGoogle Scholar
  119. Schwartz J. H. and Greenberg S. M. (1987) Molecular mechanisms for memory: second-messenger induced modifications of protein kinases in nerve cells.Annu. Rev. Neurosci. 10, 459–476.PubMedGoogle Scholar
  120. Shanklin J., Jabben M., and Vierstra R. D. (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation.Proc. Natl. Acad. Sci. USA 84, 359–364.PubMedGoogle Scholar
  121. Solomon V., Lecker S. H., and Goldberg A. L. (1998a) The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle.J. Biol. Chem. 273, 25,216–25,222.Google Scholar
  122. Solomon V., Baracos V., Sarraf P., and Goldberg A. L. (1998b) Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway.Proc. Natl. Acad. Sci. USA 95, 12,602–12,607.Google Scholar
  123. Spataro V., Norbury C., and Harris A. L. (1998) The ubiquitin-proteasome pathway in cancer.Br. J. Cancer 3, 448–455.Google Scholar
  124. Sudakin V., Ganoth D., Dahan A., Heller H., Hershko J., Luca F. C., et al. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.Mol. Biol. Cell 6, 185–197.PubMedGoogle Scholar
  125. Takai Y., Kishimoto A., Inoue M., and Nishizuka Y. (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues.J. Biol. Chem. 252, 7603–7609.PubMedGoogle Scholar
  126. Takayanagi K., Dawson S., Reynolds S. E., and Mayer R. J. (1996) Specific developmental changes in the regulatory subunits of the 26 S proteasome in intersegmental muscles preceding eclosion inManduca sexta.Biochem. Biophys. Res. Commun. 228, 517–523.PubMedGoogle Scholar
  127. Takio K., Smith S. B., Krebs E. G., Walsh K. A., and Titani K. (1984) Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3′, 5′-phosphate dependent protein kinase.Biochemistry 23, 4200–4206.PubMedGoogle Scholar
  128. Tomoda K., Kubota Y., and Kato J. (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab 1.Nature 398, 160–165.PubMedGoogle Scholar
  129. Tsubuki S, Kawasaki H., Saito Y., Miyashita N., Inomata M., and Kawashima S. (1993) Purification and characterization of Z-Leu-Leu-Leu-MCA degrading protease expected to regulate neurite formation: a novel catalytic activity in proteasome.Biochem. Biophys. Res. Comm. 196, 1195–1201.PubMedGoogle Scholar
  130. Tyers M. and Jorgensen P. (2000) Proteolysis and the cell cycle: with this RING I do thee destroy.Curr. Opin. Genes Dev. 10, 54–64.Google Scholar
  131. Varshavsky A. (1996) The N-end rule.Proc. Nat. Acad. Sci. USA 93, 12,142–12,149.Google Scholar
  132. Verma I. M., Stevenson J. K., Schwartz E. M., Van Antwerp D., and Miyamoto S. (1995) Rel/NF-κB/IκB family: intimate tales of association and dissociation.Genes Dev. 9, 2723–2735.PubMedGoogle Scholar
  133. Verma R., Annan R., Huddleston M., Carr, S., Reynard G., and Deshaies R. (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase.Science 278, 455–460.PubMedGoogle Scholar
  134. Visintin R., Prinz S., and Amon A. (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis.Science 278, 460–463.PubMedGoogle Scholar
  135. Walters E. T., Byrne J. H., Carew T. J., and Kandel E. R. (1983) Mechanoafferent neurons innervating tail ofAplysia. II. Modulation by sensitizing stimulation.J. Neurophysiol. 50, 1543–1559.PubMedGoogle Scholar
  136. Wilkinson K. D., Lee K. M., Deshpande S., Duerksen-Hughes P., Boss J. M., and Pohl J. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase.Science 246, 670–673.PubMedGoogle Scholar
  137. Wilkinson K. D., Tashayev V. L., O'Connor L. B., Larsen C. N., Kasperek E., and Pickart C. M. (1995) Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidases T.Biochem. 34, 14535–14546.Google Scholar
  138. Wilkinson K. D. (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes.FASEB J. 11, 1245–1256.PubMedGoogle Scholar
  139. Yamamoto N., Hegde A. N., Chain D. G., and Schwartz J. H. (1999) Activation and degradation of the transcription factor C/EBP during long-term facilitation inAplysia.J. Neurochem. 73, 2415–2423.PubMedGoogle Scholar
  140. Yamashita Y. M., Nakaseko Y., Samejima I., Kumada K., Yamada H., Michaelson D., and Yanagida M. (1996) 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway.Nature 384, 276–279.PubMedGoogle Scholar
  141. Yin J. C. and Tully T. (1996) CREB and the formation of long-term memory.Curr. Opin. Neurobiol. 6, 264–268.PubMedGoogle Scholar
  142. Zachariae W., Schwab M., Nasmyth K., and Seufert W. (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex.Science 282, 1721–1724.PubMedGoogle Scholar
  143. Zhang F., Endo S., Cleary L. J., Eskin A., and Byrne J. H. (1997) Role of transforming growth factor-β in long-term synaptic facilitation inAplysia.Science 275, 1318–1320.PubMedGoogle Scholar
  144. Zhong H., SuYang H., Erdjument-Bromage H., Tempst P., and Ghosh S. (1997) The transcriptional activity of NFκB is regulated by the 1κB-associated PKAc subunit through a cyclic AMP-independent mechanism.Cell 89, 413–424.PubMedGoogle Scholar
  145. Zhu Y., Carroll M., Papa F., Hochstrasser M., and D'Andrea A. D. (1996) DUB-1, a deubiquitinating enzyme with growth-suppressing activity.Proc. Natl. Acad. Sci. USA 93, 3275–3279.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Daniel G. Chain
    • 1
  • James H. Schwartz
    • 1
  • Ashok N. Hegde
    • 1
  1. 1.Center for Neurobiology and BehaviorColumbia University, College of Physicians and SurgeonsNew York

Personalised recommendations