Molecular Neurobiology

, Volume 18, Issue 1, pp 1–22 | Cite as

Detrimental effects of chronic hypothalamic—pituitary—adrenal axis activation

From obesity to memory deficits
  • Jacob Raber
Article

Abstract

Increasing evidence suggests that the detrimental effects of glucocorticoid (GC) hypersecretion occur by activation of the hypothalamic-pituitary-adrenal (HPA) axis in several human pathologies, including obesity, Alzheimer's disease, AIDS dementia, and depression. The different patterns of response by the HPA axis during chronic activation are an important consideration in selecting an animal model to assess HPA axis function in a particular disorder. This article will discuss how chronic HPA axis activation and GC hypersecretion affect hippocampal function and contribute to the development of obesity. In the brain, the hippocampus has the highest concentration of GC receptors. Chronic stress or corticosterone treatment induces neuropathological alterations, such as dendritic atrophy in hippocampal neurons, which are paralleled by cognitive deficits. Excitatory amino acid (EAA) neurotransmission has been implicated in chronic HPA axis activation. EAAs play a major role in neuroendocrine regulation. Hippocampal dendritic atrophy may involve alterations in EAA transporter function, and decreased EAA transporter function may also contribute to chronic HPA axis activation. Understanding the molecular mechanisms of HPA axis activation will likely advance the development of therapeutic interventions for conditions in which GC levels are chronically elevated.

Index Entries

Glucocortioids adrenal gland hypothalamus amygdala hippocampus chronic stress excitatory amino acids arginine vasopressin cognitive deficits obesity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolphs R., Tranel D., Damasio H. and Damasio A. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala.Nature 372, 669–672.PubMedCrossRefGoogle Scholar
  2. Aguilera G. (1994) Regulation of pituitary ACTH secretion during chronic stress.Front. Neuroendocrinol. 15, 321–350.PubMedCrossRefGoogle Scholar
  3. Aguilera G., Lightman S. L. and Kiss A. (1993) Regulation of the hypothalamic-pituitary-adrenal axis during water deprivation.Endocrinology 132, 241–248.PubMedCrossRefGoogle Scholar
  4. Akana S. F., Chu A. C. and Dallman M. F. (1997) Corticosterone in the amygdala determines abdominal obesity in a state-dependent manner.Soc. Neurosci. Ann. Meeting 23, 1792 (abstr.).Google Scholar
  5. Almawi W. Y., Beylum H. N., Rahme A. A. and Rieder M. J. (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids.J. Leukocyte Biol. 60, 563–572.PubMedGoogle Scholar
  6. Antoni F. A. (1986) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor.Endoc. Rev. 7, 351–378.Google Scholar
  7. Appel N. M., Owens M. J., Culp S., Zaczek R., Contrera J. F., Bissette G., et al. (1991) Role for brain corticotropin-releasing factor in the weight-reducing effects of chronic fenfluramine treatments in rats.Endocrinology 128, 3237–3246.PubMedGoogle Scholar
  8. Arase K., York D. A., Shimuzu H., Shargill N. and Bray G. A. (1988) Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats.Am. J. Physiol. 255, E255–259.PubMedGoogle Scholar
  9. Arbel I., Kadar T., Silbermann M. and Levy A. (1994) The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats.Brain Res. 657, 227–235.PubMedCrossRefGoogle Scholar
  10. Arias C., Arrieta I. and Tapia R. (1995) β-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices.J. Neurosci. Res. 41, 561–566.PubMedCrossRefGoogle Scholar
  11. Auphan M., DiDonato J. A., Rosette C., Helmberg A. and Karin M. (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of I-κB synthesis.Science 270, 286–290.PubMedCrossRefGoogle Scholar
  12. Bagley J. and Moghaddam B. (1997) Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of preteatment with saline or diazepam.Neuroscience 77, 65–73.PubMedCrossRefGoogle Scholar
  13. Balcar V. J. and Li Y. (1992) Heterogeneity of high affinity uptake ofl-glutamate andl-aspartate in the mammalian central nervous system.Life Sci. 51, 1467–1478.PubMedCrossRefGoogle Scholar
  14. Bardgett M. E., Taylor G. T., Csernansky J. G., Newcomer J. W. and Nock B. (1994) Chronic corticosterone treatment impairs spontaneous alternation behavior in rats.Behav. Neural. Biol. 61, 186–190.PubMedCrossRefGoogle Scholar
  15. Bartanusz V., Jezova D., Bertini L. T., Tilders F. J. H., Aubry J. M. and Kiss J. Z. (1993) Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons.Endocrinology 132, 895–902.PubMedCrossRefGoogle Scholar
  16. Beaulieu S., Pelletier G., Vaudry H. and Barden N. (1989) Influence of the central nucleus of the amygdala on the content of corticotropin-releasing factor in the median eminence.Neuroendocrinology 49, 255–261.PubMedGoogle Scholar
  17. Bender B. G., Lerner J. A. and Poland J. E. (1991) Association between corticosteroids and psychologic change in hospitalized asthmatic children.Ann. Allergy 66, 414–419.PubMedGoogle Scholar
  18. Benveniste H., Drejer J., Schousboe A. and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1375.PubMedCrossRefGoogle Scholar
  19. Bjorntorp P. (1991) Metabolic implications of body fat distribution.Diabetes Care 14, 1132–1143.PubMedCrossRefGoogle Scholar
  20. Bodnoff S. R., Humphreys A. G., Lehman J. C., Diamond D. M., Rose G. M. and Meaney M. L. (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and midaged rats.J. Neurosci. 15, 61–69.PubMedGoogle Scholar
  21. Boston B. A., Blaydon K. M., Varnerin J. and Cone R. D. (1997) Independent and additive effects of central POMC and leptin pathways on murine obesity.Science 278, 1641–1644.PubMedCrossRefGoogle Scholar
  22. Britton D. R., Koob G. F., Rivier J. and Vale W. (1982) Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty.Life Sci. 31, 363–367.PubMedCrossRefGoogle Scholar
  23. Bruce B. K., King B. M., Phelps G. R. and Veita M. C. (1982) Effects of adrenalectomy and corticosterone administration on hypothalamic obesity in rats.Am. J. Physiol. 243, E152–157.PubMedGoogle Scholar
  24. Busbridge N. J., Carnie J. A., Dascombe M. J., Johnston J. A. and Rothwell N. J. (1990) Adrenalectomy reverses the impaired pyrogenic responses to interleukin-beta in obese Zucker rats.Int. J. Obes. 14, 809–814.PubMedGoogle Scholar
  25. Butterfield D. A. (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer's disease.Chem. Res. Toxicol. 10, 495–506.PubMedCrossRefGoogle Scholar
  26. Caputo F. A., Ali S. F., Wolff G. L. and Scallet A. C. (1996) Neonatal MSG reduces hypothalamic DA, beta-endorphin, and delays weight gain in genetically obese (A viable yellow/alpha) mice.Pharmacol. Biochem. Behav. 53, 425–432.PubMedCrossRefGoogle Scholar
  27. Chao H. M. and McEwen B. S. (1994) Glucocorticoids and the expression of mRNAs for neurotrophin, their receptors and GAP-43 in the rat hippocampus.Mol. Brain Res. 26, 271–276.PubMedCrossRefGoogle Scholar
  28. Chautard T., Boudouresque F., Guillaume V. and Oliver C. (1993) Effect of excitatory amino acid on the hypothalamic-pituitary-adrenal axis in the rat during the stress-hyporesponsive period.Neuroendocrinology 57, 70–78.PubMedGoogle Scholar
  29. Chou Y.-C., Lin W. J. and Sapolsky R. M. (1994) Glucocorticoids increase extracellular [3H]d-aspartate overflow in hippocampal cultures during cyanide-induced ischemia.Brain Res. 654, 8–14.PubMedCrossRefGoogle Scholar
  30. Chowdrey H. S., Jessop D. S. and Lightman S. L. (1991) Altered adrenocorticotropin, corticosterone and oxytocin responses to stress during chronic salt load.Neuroendocrinology 54, 635–638.PubMedGoogle Scholar
  31. Cintra A., Fuxe K., Agnati L. F., Persson L., Härfstrand A., Zoli M., et al. (1987a) Evidence for the existence of ornithine decarboxylase-immunoreactive neurons in the rat brain.Neurosci. Lett. 76, 269–274.PubMedCrossRefGoogle Scholar
  32. Cintra A., Fuxe K., Harfstrand A., Agnati L. F., Tinner B., Wikstrom A.-C., et al. (1987b) Evidence for the presence of glucocorticoid receptor immunoreactivity in corticotropin-releasing factor and in growth hormone releasing factor immunoreactive neurones of the rat di- and telencephalon.Neurosci. Lett. 76, 275–280.CrossRefGoogle Scholar
  33. Clark A. S., Mitre M. C. and Brinck-Johnsen T. (1995) Anabolic-androgenic steroid and adrenal steroid effects on hippocampal plasticity.Brain Res. 679, 64–71.PubMedCrossRefGoogle Scholar
  34. Coleman P. D. and Flood D. G. (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer's disease.Neurobiol. Aging 8, 521–545.PubMedCrossRefGoogle Scholar
  35. Coyle J. T., Ferkany J. W. and Zaczek R. (1983) Kainic acid: insights from a neurotoxin into the pathophysiology of Huntington's disease.Neurobehav. Tox. Teratol. 5, 617–624.Google Scholar
  36. Cunningham J. J., Calles-Escandon J., Garrido F., Carr D. B. and Bode H. H. (1986) Hypercorticosteronuria and diminished pituitary responsiveness to corticotropin-releasing factor in obese Zucker rats.Endocrinology 118, 98–101.PubMedGoogle Scholar
  37. Dachir S., Kadar T., Robinzon B. and Levy A. (1993) Cognitive deficits induced in young rats by longterm corticosterone administration.Behav. Neural Biol. 60, 103–109.PubMedCrossRefGoogle Scholar
  38. Dallman M. F., Akana S. F., Cascio C. S., Darlington D. N., Jacobson L. and Levin N. (1987) Regulation of ACTH secretion: Variations on a theme of B.Recent Prog. Horm. Res. 43, 113–173.PubMedGoogle Scholar
  39. Dallman M. F., Strack A. M., Akana S. F., Bradbury M. J., Hanson E. S., Schribner K. A. and Smith M. (1993) Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.Front. Neuroendocrinol. 14, 303–347.PubMedCrossRefGoogle Scholar
  40. Davis M. (1992) The role of the amygdala in fear and anxiety.Annu. Rev. Neurosci. 15, 353–375.PubMedCrossRefGoogle Scholar
  41. Dawson R., Pelleymounter M. A., Millard W. J., Liu S. and Eppler B. (1997) Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage.Am. J. Physiol. 273, E202–206.PubMedGoogle Scholar
  42. De Bosscher K., Schmitz M. L., Vanden Berghe W., Plaisance S., Fiers W. and Haegeman G. (1997) Glucocorticoid-mediated repression of nuclear factor-κB-dependent transcription involves direct interference with transactivation.Proc. Natl. Acad. Sci. USA 94, 1504–1509.CrossRefGoogle Scholar
  43. De Goeij D. C. E., Binnekade R. and Tilders F. J. H. (1992a) Chronic stress enhances vasopressin but not corticotropin-releasing factor secretion during hypoglycemia.Am. J. Physiol 263, E394-E399.PubMedGoogle Scholar
  44. De Goeij D. C. E., Dijkstra H. and Tilders F. J. H. (1992b) Chronic psychosocial stress enhances vasopressin but not corticotropin-releasing factor, in the external zone of the median eminence of male rats: relationship to subordinate status.Endocrinology 131, 847–853.PubMedCrossRefGoogle Scholar
  45. De Goeij D. C. E., Jezova D. and Tilders F. J. H. (1992c) Repeated stress enhances vasopressin in corticotropin-releasing factor neurons in the paraventricular nucleus.Brain Res. 577, 165–168.PubMedCrossRefGoogle Scholar
  46. De Leon M. J., McRae T., Tsai J. R., George A. E., Marcus D. L., Freedman M., et al. (1988) Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy.Lancet 2, 391–392.PubMedGoogle Scholar
  47. De Vos P., Saladin R., Auwerx J. and Staels B. (1995) Induction ofob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake.J. Biol. Chem. 270, 15958–15961.PubMedCrossRefGoogle Scholar
  48. Devenport L., Knehans A., Sundstrom A. and Thomas T. (1989) Corticosterone's dual metabolic actions.Life Sci. 45, 1389–1396.PubMedCrossRefGoogle Scholar
  49. Diorio D., Viau V. and Meaney M. J. (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.J. Neurosci. 13, 3839–3847.PubMedGoogle Scholar
  50. Dohanics J., Kovacs K. J., Folly G. and Makara G. B. (1990) Long term salt loading impairs pituitary responsiveness to ACTH secretagogues and stress in rats.Peptides 11, 59–63.PubMedCrossRefGoogle Scholar
  51. Dornhorst A., Carlson D. E., Seif S. M., Robinson A. G., Zimmerman E. A. and Gann D. S. (1981) Control of release of adrenocorticotropin and vasopressin by the supraoptic and paraventricular nuclei.Endocrinology 108, 1420–1424.PubMedGoogle Scholar
  52. Dowd L. A. and Robinson M. B. (1996) Rapid stimulation of EAAC1-mediated Na+-dependentl-glutamate transport activity in C6 glioma cells by phorbol ester.J. Neurochem. 67, 508–516.PubMedCrossRefGoogle Scholar
  53. Doyle P., Rohner-Jeanrenaud F. and Jeanrenaud B. (1993) Local cerebral glucose utilization in brains of lean and genetically obese (fa/fa) rats.Am. J. Physiol. 264, E29–36.PubMedGoogle Scholar
  54. Dunn J. D. (1987) Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis.Brain Res. 407, 327–331.PubMedCrossRefGoogle Scholar
  55. Dunn J. D. and Whitener J. (1986) Plasma corticosterone responses to electrical stimulation of the amygdaloid complex: Cytoarchitectural specificity.Neuroendocrinology 42, 211–217.PubMedGoogle Scholar
  56. Eleftheriou B. E., Elias M. F. and Norman R. L. (1972) Effects of amygdaloid lesions on reversal learning in the deermouse.Physiol. Behav. 9, 69–73.PubMedCrossRefGoogle Scholar
  57. Elkabir D. R., Wyatt M. E., Vellucci S. V. and Herbert J. (1990) The effects of separate or combined infusions of corticotrophin-releasing factor and vasopressin either intraventricularly or into the amygdala on aggressive and investigative behaviour in the rat.Regul. Pept. 28, 199–214.PubMedCrossRefGoogle Scholar
  58. Elliott E. and Sapolsky R. (1992) Corticosterone enhances kainic acid-induced calcium mobilization in cultured hippocampal neurons.J. Neurochem. 59, 1033–1039.PubMedCrossRefGoogle Scholar
  59. Elliott E. and Sapolsky R. (1993) Corticosterone impairs hippocampal neuronal calcium regulation: Possible mediating mechanisms.Brain Res. 602, 84–89.PubMedCrossRefGoogle Scholar
  60. Emoto H., Koga C., Ishii H., Yokoo H., Yoshida M. and Tanaka M. (1993) A CRF antagonist attenuates stress-induced increases in NA turnover in extended brain regions in rats.Brain Res. 627, 171–176.PubMedCrossRefGoogle Scholar
  61. Faden A. L., Demediuk P., Panter S. S. and Vink R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury.Science 244, 798–800.PubMedCrossRefGoogle Scholar
  62. Fagg G. E. and Foster A. C. (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system.Neuroscience 9, 701–719.PubMedCrossRefGoogle Scholar
  63. Falls W. A., Miserendino M. J. D. and Davis M. (1992) Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala.J. Neurosci. 12, 854–863.PubMedGoogle Scholar
  64. Farb C., Aoki C., Milner T., Kaneko T. and LeDoux J. (1992) Glutamate immunoreactive terminals in the lateral amygdaloid nucleus: A possible substrate for emotional memory.Brain Res. 593, 2517–2529.CrossRefGoogle Scholar
  65. Feldman S. and Conforti N. (1976) Feedback effects of dexamethasone on adrenocortical responses in rats with fornix lesions.Horm. Res. 7, 56–60.PubMedGoogle Scholar
  66. Fine S. M., Angel R. A., Perry S. W., Epstein L. G., Rothstein J. D., Dewhurst S. and et al. (1996) Tumor necrosis factor α inhibits glutamate uptake by primary human astrocytes.J. Biol. Chem. 271, 15303–15306.PubMedCrossRefGoogle Scholar
  67. Fischette C., Kosimurak B., Ediner H., Feder H. H. and Siegal A. (1980) Differential fornix ablations and the circadian rhythmicity of adrenal corticosterone secretion.Brain Res. 195, 373–380.PubMedCrossRefGoogle Scholar
  68. Fukushima M., Nakai Y., Tsukada T., Naito Y., Nakaishi S., Tominaga T., et al. (1992) Immunoreactive corticotropin-releasing hormone levels in the hypothalamus of female Wistar fatty rats.Neurosci. Lett. 138, 245–248.PubMedCrossRefGoogle Scholar
  69. Gabr R. W., Birkle D. L. and Azzaro A. J. (1995) Stimulation of the amygdala by glutamate facilitates corticotropin-releasing factor release from the median eminence and activation of the hypothalamic-pituitary-adrenal axis in stressed rats.Neuroendocrinology 62, 333–339.PubMedGoogle Scholar
  70. Gay V. L. and Plant T. M. (1987)N-methyl-dl-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatta).Endocrinology 120, 2289–2296.PubMedGoogle Scholar
  71. Gegelashvili G., Civenni G., Racagni G., Danbolt N. C., Schousboe I. and Schousboe A. (1996) Glutamate receptor agonists up-regulate glutamate transporter GLAST in astrocytes.Neuroreport 8, 261–265.PubMedCrossRefGoogle Scholar
  72. Globus M. Y., Busto R., Dietrich W. D., Martinez E., Valdes I. and Ginsberg M. D. (1988) Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis.J. Neurochem. 51, 1455–1464.PubMedCrossRefGoogle Scholar
  73. Glowa J. R., Barrett J. E., Russell J. and Gold P. W. (1992) Effects of corticotropin releasing hormone on appetitive behaviors.Peptides 13, 609–621.PubMedCrossRefGoogle Scholar
  74. Gold P. W., Licinio J., Wong M.-L. and Chrousos G. P. (1995) Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs.Ann. NY. Acad. Sci. 771, 716–729.PubMedCrossRefGoogle Scholar
  75. Goujon E., Parnet P., Cremona S. and Dantzer R. (1995) Endogenous glucocorticoids down regulate central effects of interleukin-1 beta on body temperature and behaviour in mice.Brain Res. 702, 173–180.PubMedCrossRefGoogle Scholar
  76. Gray J. A. (1982)The Neuropsychology of Anxiety. Clarendon, Oxford.Google Scholar
  77. Gray J. A. and McNaughton N. (1983) Comparison between the behavioural effects of septal and hippocampal lesions: A review.Neurosci. Biobehav. Rev. 7, 119–188.PubMedCrossRefGoogle Scholar
  78. Gray T. S., Carney M. E. and Magnuson D. J. (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: Possible role in stress-induced adrenocorticotropin release.Neuroendocrinology 50, 433–446.PubMedGoogle Scholar
  79. Gray T. S., Piechowski R. A., Yracheta J. M., Rittenhouse P. A., Bethea C. L. and Van de Kar L. D. (1993) Ibotenic acid lesions in the bed nucleus of the stria terminalis attenuate conditioned stress-induced increases in prolactin, ACTH and corticosterone.Neuroendocrinology 57, 517–524.PubMedGoogle Scholar
  80. Greenamyre J. T. and Porter R. H. (1994) Anatomy and physiology of glutamate in the CNS.Neurology 44, S7-S13.PubMedGoogle Scholar
  81. Greenamyre J. T. and Young A. B. (1989) Excitatory amino acids and Alzheimer's disease.Neurobiol. Aging 10, 593–602.PubMedCrossRefGoogle Scholar
  82. Gurevich D., Siegel B., Dumlao M., Perl E., Chaitin P., Bagne C., et al. (1990) HPA axis responsivity to dexamethasone and cognitive impairment in dementia.Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 297–308.PubMedCrossRefGoogle Scholar
  83. Hanisch U. K., Rowe W., Sharma S., Meany M. J. and Quirion R. (1994) Hypothalamic-pituitary-adrenal activity during chronic central administration of interleukin-2.Endocrinology 135, 2465–2472.PubMedCrossRefGoogle Scholar
  84. Harbuz M. S., Stephanou, A., Sarlis, N. and Lightman, S. L. (1992) The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation.J. Endocrinol. 133, 349–355.PubMedGoogle Scholar
  85. Hardwick A. J., Linton E. A. and Rothwell N. J. (1989) Thermogenic effects of the antiglucocorticoid RU-486 in the rat: involvement of corticotropin-releasing factor and sympathetic activation of brown adipose tissue.Endocrinology 124, 1684–1688.PubMedGoogle Scholar
  86. Hashimoto K., Suemaru S., Takao T., Sugawara M., Makino S. and Fensuka O. (1998) Corticotropinreleasing hormone and pituitary-adrenocortical responses in chronically stressed rats.Regul. Pept. 23, 117–126.CrossRefGoogle Scholar
  87. Hatzinger M., Z'brun A., Hemmeter U., Seifritz E., Baumann F., Holsboer-Trachsler E. et al. (1995) Hypothalamic-pituitary-adrenal system function in patients with Alzheimer's disease.Neurobiol. Aging 16, 205–209.PubMedCrossRefGoogle Scholar
  88. Hauger R. L. and Aguilera G. (1992) Regulation of corticotropin-releasing hormone receptors and hypothalamic pituitary adrenal axis responsiveness during cold stress.J. Neuroendocrinol. 4, 617–624.CrossRefGoogle Scholar
  89. Hauger R. L., Millan M. A., Lorang M., Harwood J. P. and Aguilera G. (1988) Corticotropin-releasing factor receptors and pituitary adrenal responses during immobilization stress.Endocrinology 123, 396–405.PubMedGoogle Scholar
  90. Heinrichs S. C., Lapsansky J., Behan D. P., Chan R. K., Sawchenko P. E., Lorang M., et al. (1996) Corticotropin-releasing factor-binding protein ligand inhibitor blunts excessive weight gain in genetically obese Zucker rats and rats during nicotine withdrawal.Proc. Natl. Acad. Sci. USA 93, 15475–15480.PubMedCrossRefGoogle Scholar
  91. Herman J. O., Cullinan W. E. and Watson S. J. (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression.J. Neuroendocrinol. 6, 433–442.PubMedCrossRefGoogle Scholar
  92. Herman J. P., Adams D. and Prewitt C. (1995) Regulatory changes in neuroendocrine strees-integrative circuitry produced by a variable stress paradigm.Neuroendocrinology 61, 180–190.PubMedGoogle Scholar
  93. Holt S. and York D. A. (1982) The effect of adrenalectomy on GDP binding to brown-adipose-tissue mitochondria of obese rat.Biochem. J. 208, 819–822.PubMedGoogle Scholar
  94. Honkaniemi J., Pelto-Huikko M., Rechardt L., Isola J., Lammi A., Fuxe K., et al. (1992) Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus.Neuroendocrinology 55, 451–459.PubMedGoogle Scholar
  95. Horel J. A. (1978) The neuroanatomy of amnesia. A critique of the hippocampal memory hypothesis.Brain 101, 403–445.PubMedCrossRefGoogle Scholar
  96. Horner H., Packan D. and Sapolsky R. (1990) Glucocortioicds inhibit glucose transport in cultured hippocampal neurons and glia.Neuroendocrinology 52, 57–62.PubMedGoogle Scholar
  97. Hu Y., Dietrich H., Herold M., Heinrich P. C. and Wick G. (1993) Disturbed immuno-endocrine communication via the hypothalamo-pituitaryadrenal axis in autoimmune disease.Int. Arch. Allergy Immunol. 102, 232–241.PubMedCrossRefGoogle Scholar
  98. Issa A. M., Rowe W., Gauthier S. and Meany M. J. (1990) Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats.J. Neurosci. 10, 3247–3254.PubMedGoogle Scholar
  99. Jacobs L. and Johnson K. P. (1994) A brief history of the use of interferons as treatment of multiple sclerosis.Arch. Neurol. 51, 1245–1252.PubMedGoogle Scholar
  100. Jacobson L. and Sapolsky R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.Endocr. Rev. 12, 118–134.PubMedGoogle Scholar
  101. Jenike M. A. and Albert M. S. (1984) The dexamethasone suppression test in patients with presenile and senile dementia of the Alzheimer's type.J. Am. Geriatr. Soc. 32, 441–444.PubMedGoogle Scholar
  102. Jessop D. S., Chowdrey H. S. and Lightman S. L. (1990) Inhibition of rat corticotropin-releasing factor and adrenocorticotropin secretion by an osmotic stimulus.Brain Res. 523, 1–4.PubMedCrossRefGoogle Scholar
  103. Jezova D., Oliver C. and Jurcovicova J. (1991) Stimulation of adrenocorticotropin but not prolactin and catecholamine release by N-methyl-aspartic acid.Neuroendocrinology 54, 488–492.PubMedGoogle Scholar
  104. Joanny P., Steinberg J., Oliver C. and Grino M. (1997) Glutamate andN-methyl-d-aspartate stimulate rat hypothalamic corticotropin-releasing factor secretionin vitro.J. Neuroendocrinol. 9, 93–97.PubMedCrossRefGoogle Scholar
  105. Joels M. and De Kloet E. (1989) Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus.Science 245, 110–112.CrossRefGoogle Scholar
  106. Joels M. and De Kloet E. R. (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.Prog. Neurobiol. 43, 1–36.PubMedCrossRefGoogle Scholar
  107. Johnson C. L. and Johnson C. G. (1993) Substance P regulation of glutamate and cysteine transport in buman astrocytoma cells.Receptors Channels 1, 53–59.PubMedGoogle Scholar
  108. Kanai Y., Smith C. P. and Hediger M. A. (1993) A new family of neurotransmitter transporters: The high-affinity glutamate transporters.FASEB J. 7, 1450–1459.PubMedGoogle Scholar
  109. Keller J. N., Pang Z., Geddes J. W., Begley J. G., Germeyer A., Waeg G., et al. (1997) Impairment of glucose and glutamate transport, and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: Role of the lipid peroxidation product 4-hydroxynonenal.J. Neurochem. 269, 273–284.Google Scholar
  110. Keller-Wood M. E. and Dallman M. F. (1984) Corticosteroid inhibition of ACTH secretion.Endocr. Rev. 5, 1–24.PubMedGoogle Scholar
  111. Kerr D., Campbell L., Thibault O. and Landfield P. (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent calcium conductances: Relevance to brain aging.Proc. Natl. Acad. Sci. USA 89, 8527–8531.PubMedCrossRefGoogle Scholar
  112. Killcross S., Robbins T. W. and Everitt B. J. (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within the amygdala.Nature 388, 377–380.PubMedCrossRefGoogle Scholar
  113. King B. M., Arcenaux E. R., Cook J. T., Benjamin A. L. and Alheid G. F. (1996a) Temporal lobe lesion-induced obesity in rats: an anatomical investigation of the posterior amygdala and hippocampal formation.Physiol. Behav. 59, 843–848.PubMedCrossRefGoogle Scholar
  114. King B. M., Cook J. T. and Dallman M. F. (1996b) Hyperinsulinemia in rats with obesity-inducing amygdaloid lesions.Am. J. Physiol. 271, R1156–1159.PubMedGoogle Scholar
  115. King B. M., Rossiter K. N., Cook J. T. and Sam H. M. (1997) Amygdaloid lesion-induced obesity in rats in absence of finickiness.Physiol. Behav. 62, 935–938.PubMedCrossRefGoogle Scholar
  116. Kiss A. and Aguilera G. (1993) Regulation of the hypothalamic pituitary adrenal axis during chronic stress: Responses to repeated intraperitoneal hypertonic saline injection.Brain Res. 630, 262–270.PubMedCrossRefGoogle Scholar
  117. Koch M. and Ebert U. (1993) Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/ basal nucleus of Meynert to the pontine reticular formation.Exp. Brain Res. 93, 231–241.PubMedCrossRefGoogle Scholar
  118. Kononen J., Soinila S., Persson H., Honkaniemi J., Hokfelt T. and Pelto-Huikko M. (1994) Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.Mol. Brain Res. 27, 347–354.PubMedCrossRefGoogle Scholar
  119. Koob G. F., Heinrichs S. C., Pich E. M., Menzaghi F., Baldwin H., Miczek K., et al. (1993) The role of corticotropin-releasing factor in behavioural responses to stress.Ciba Found. Symp. 172, 277–289.PubMedGoogle Scholar
  120. Kremer B., Tallaksen-Greene S. J. and Albin R. L. (1993) AMPA and NMDA binding sites in the hypothalamic lateral tuberal nucleus: implications for Huntington's disease.Neurology 43, 1593–1595.PubMedGoogle Scholar
  121. Landfield P. W., Baskin R. K. and Pitler T. A. (1981) Brain aging correlates: Retardation by hormonal-pharmacological treatments.Science 214, 581–584.PubMedCrossRefGoogle Scholar
  122. Langley S. C. and York D. A. (1990) Increased type II glucocorticoid-receptor numbers and glucocorticoid-sensitive enzyme activities in the brain of obese Zucker rat.Brain Res. 533, 268–274.PubMedCrossRefGoogle Scholar
  123. Langley S. C. and York D. A. (1992) Glucocorticoid receptor numbers in the brain and liver of the obese Zucker rat.Int. J. Obes. Relat. Metab. Disord. 16, 135–143.PubMedGoogle Scholar
  124. Liang K. C. and Lee E. H. Y. (1988) Intra-amygdala injections of corticotropin releasing factor facilitate inhibitory avoidance learning and reduce exploratory behavior in rats.Psychopharmacology 96, 232–236.PubMedCrossRefGoogle Scholar
  125. Lightman S. L. (1994) How does the hypothalamus respond to stress?Neurosciences 6, 215–219.Google Scholar
  126. Lindholm D., da Penha Berzaghi M., Cooper J., Thoenen H. and Castren E. (1994) Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus.Int. J. Dev. Neurosci. 12, 745–751.PubMedCrossRefGoogle Scholar
  127. Lipton S. A. and Rosenberg P. A. (1994) Mechanisms of diseases: Excitatory amino acids as a final common pathway for neurologic disorders.N. Engl. J. Med. 330, 613–622.PubMedCrossRefGoogle Scholar
  128. Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., et al. (1997) Maternal care, hippocampal glucocorticoid receptors and hypothalamic-pituitary-adrenal responses to stress.Science 277, 1659–1662.PubMedCrossRefGoogle Scholar
  129. Lowy M. T., Gault L. and Yamamoto B. K. (1993) Adrenalectomy attenuates stress-induced elevatrions in extracellular glutamate concentrations in the hippocampus.Google Scholar
  130. Lowy M., Wittenberg L. and Novotney S. (1994) Adrenalectomy attenuates kainic acid-induced spectrin proteolysis and heat shock protein 70 induction in hippocampus and cortex.J. Neurochem. 63, 886–893.PubMedCrossRefGoogle Scholar
  131. Lowy M., Wittenberg L. and Yamamoto B. (1995) Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats.J. Neurochem. 65, 268–274.PubMedCrossRefGoogle Scholar
  132. Magariños A. M. and McEwen B. S. (1995) Stressinduced atrophy of apical dendrites of hippocampal CA3c neurons: Comparison of stressors.Neuroscience 69, 83–88.PubMedCrossRefGoogle Scholar
  133. Magariños A. M., Verdugo J. M. G. and McEwen B. S. (1997) Chronic stress alters synaptic terminal structure in hippocampus.Proc. Natl. Acad. Sci. USA 94, 14,002–14,008.CrossRefGoogle Scholar
  134. Makino S., Smith M. A. and Gold P. W. (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: Association with reduction in glucocorticoid receptor mRNA levels.Endocrinology 136, 3299–3309.PubMedCrossRefGoogle Scholar
  135. Marchington D., Rothwell N. J., Stock M. J. and York D. A. (1983) Energy balance, diet-induced thermogenesis and brown adipose tissue in lean and obese (fa/fa) Zucker rats after adrenalectomy.J. Nutri. 113, 1395–1402.Google Scholar
  136. Masliah E., Alford M., DeTeresa R., Mallory M. and Hansen L. (1996) Deficient glutamate trasport is associated with neurodegeneration in Alzheimer's disease.Ann. Neurol. 40, 759–766.PubMedCrossRefGoogle Scholar
  137. Massieu L. and Tapia R. (1997) Glutamate uptake impairment and neuronal damage in young and aged rats in vivo.J. Neurochem. 69, 1151–1160.PubMedCrossRefGoogle Scholar
  138. Mastorakos G., Chrousos, G. P. and Weber, J. S. (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans.J. Clin. Endocrinol. Metab. 77, 1690–1694.PubMedCrossRefGoogle Scholar
  139. Mastorakos G., Weber, J. S., Magiakou, M. A., Gunn, H. and Chrousos, G. P. (1994) Hypothalamicpituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interluekin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion.J. Clin. Endocrinol. Metab. 79, 934–939.PubMedCrossRefGoogle Scholar
  140. Matheson G. K., Branch B. J. and Taylor A. N. (1971) Effects of amygdaloid stimulation on pituitary-adrenal activity in conscious cats.Brain Res. 32, 151–167.PubMedCrossRefGoogle Scholar
  141. Mattson M. P. and Rychlik B. (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor.Int. J. Dev. Neurosci. 8, 399–415.PubMedCrossRefGoogle Scholar
  142. Mauri M., Sinforiani E., Bono G., Vignati F., Berselli M. E., Attanasio R., et al. Nappi G. (1993) Memory impairment in Cushing's disease.Acta Neurol. Scand. 87, 52–55.PubMedCrossRefGoogle Scholar
  143. McCarthy H. D., McKibbin P. E., Perkins A. V., Linton E. A. and Williams G. (1993) Alterations in hypothalamic NPY and CRF in anorexic tumorbearing rats.Am. J. Physiol. 264, E638–643.PubMedGoogle Scholar
  144. McDonald A. J. (1987) Somatostatinergic projections from the amygdala to the bed nucleus of the stria terminalis and medial preoptic-hypothalamic region.Neurosci. Lett. 75, 271–277.PubMedCrossRefGoogle Scholar
  145. McEwen B. S. (1997) Possible mechanisms for atrophy of the human hippocampus.Mol. Psychiatry 2, 255–262.PubMedCrossRefGoogle Scholar
  146. McEwen B. S., Angulo J., Cameron H., Chao H. M., Daniels D., Gannon M. N., et al. (1992) Paradoxical effects of adrenal steroids on the brain: protection versus degeneration,Biol. Psychiatr. 31, 177–199.CrossRefGoogle Scholar
  147. McEwen B. S., Conrad C. D., Kuroda Y., Frankfurt M., Magarinos A. M. and McKittrick C. (1997) Prevention of stress-induced morphological and cognitive consequences.Eur. Neuropharmacol. Suppl. 3, S323-S328.CrossRefGoogle Scholar
  148. McEwen B. S., Weiss J. M. and Schwartz L. S. (1968) Selective retention of corticosterone by limbic structures in rat brain.Nature 220, 911–912.PubMedCrossRefGoogle Scholar
  149. McGinnis R., Walker J. and Margules D. (1987) Genetically obese (ob/ob) mice are hypersensitive to glucocortioid stimulation of feeding but dramatically resist glucocorticoid-induced weight loss,Life Sci. 40, 1561–1570.PubMedCrossRefGoogle Scholar
  150. McLay R. N., Freeman S. M., Harlan R. E., Ide C. F., Kastin A. J. and Zadina J. E. (1997) Aging in the hippocampus: Interrelated actions of neurotrophins and glucocorticoids.Neurosci. Behav. Rev. 21, 615–629.Google Scholar
  151. Meany M. J., Aitken D. H., van Berkel C., Bhatnagar S. and Sapolsky R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus.Science 239, 766–768.CrossRefGoogle Scholar
  152. Meeker R. B., Greenwood R. S. and Hayward J. N. (1993) Glutamate is the major excitatory transmitter in the supraoptic nuclei.Ann. NY Acad. Sci. 689, 636–639.PubMedCrossRefGoogle Scholar
  153. Moghaddam B. (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: Comparison to hippocampus and basal ganglia.J. Neurochem. 60, 1650–1656.PubMedCrossRefGoogle Scholar
  154. Moghaddam B., Bolinao M., Stein-Behrens B. and Sapolsky R. (1994) Glucocorticoids mediate the stress-induced accumulation of extracellular glutamate.Brain Res. 655, 251–256.PubMedCrossRefGoogle Scholar
  155. Moller C., Wiklund L., Sommer W., Thorsell A. and Heilig M. (1997) Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions.Brain Res. 760, 94–101.PubMedCrossRefGoogle Scholar
  156. Mook D. G., Fischer J. C. and Durr J. C. (1975) Some endocrine influences on hypothalamic hyperphagia.Horm. Behav. 6, 65–79.PubMedCrossRefGoogle Scholar
  157. Morley J. E. (1987) Neuropeptide regulation of appetite and weight.Endocr. Rev. 8, 256–287.PubMedGoogle Scholar
  158. Nakaishi S., Nakai Y., Fukata J., Naito Y., Usui T. and Imura T. (1990) Immunoreactive corticotropinreleasing hormone levels in brain regions of genetically obese Zucker rats.Int. J. Obes. 14, 951–955.PubMedGoogle Scholar
  159. Nasman B., Olsson T., Fagerlund M., Eriksson S., Viitanen M. and Carlstrom K. (1996) Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer's disease.Biol. Psychol. 39, 311–318.CrossRefGoogle Scholar
  160. Newcomer J. W., Craft S., Hershey T., and Bardgett M. E. (1994) Glucocorticoid-induced impairment in declarative memory in adult humans.J. Neurosci. 14, 2047–2053.PubMedGoogle Scholar
  161. Newcomer J. W., Faustman W. O., Whiteford H. A., Moses J. A. and Csernansky J. G. (1991) Symptomatology and cognitive impairment associate independently with post-dexamethasone cortisol concentrations in unmedicated schizophrenic patients.Biol. Psychiatry 29, 855–864.PubMedCrossRefGoogle Scholar
  162. Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids.Trends Pharmacol. Sci. 11, 462–468.PubMedCrossRefGoogle Scholar
  163. Norbiato G., Bevilacqua M., Vago T., Taddei A. and Clerici M. (1997) Glucocorticoids and the immune function in hypercortisolemic and cortisol-resistant patients.J. Clin. Endocrinol. Metab. 82, 3260–3263.PubMedCrossRefGoogle Scholar
  164. O'Brien J. T., Ames D., Schweitzer I., Colman P., Desmond P. and Tress B. (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease.Br. J. Psychol. 168, 679–687.Google Scholar
  165. Oberfield S. E., Cowan L., Levine L. S., George A., David R., Litt A., et al. (1994) Altered cortisol response and hippocampal atrophy in pediatric HIV disease.J. Acquir. Immune Defic. Syndr. 7, 57–62.PubMedGoogle Scholar
  166. Oitzl M. S. and De Kloet E. R. (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.Behav. Neurosci. 106, 62–71.PubMedCrossRefGoogle Scholar
  167. Oitzl M. S., Fluttert M. and De Kloet E. R. (1994) The effect of corticosterone on reactivity to spatial novelty is mediated by central mineralocorticosteroid receptors.Eur. J. Neurosci. 6, 1072–1079.PubMedCrossRefGoogle Scholar
  168. Olney J. W. (1990) Excitotoxicity: an overview.Can. Dis. Weekly Rep. 16 Suppl. 1E, 47–57.Google Scholar
  169. Olney J. W., Wozniak D. F., Nuri B., and Farber M. D. (1997) Excitotoxic neurodegeneration in Alzheimer's disease.Arch. Neurol. 54, 1234–1240.PubMedGoogle Scholar
  170. Otten U., Baumann J. B. and Girard J. (1979) Stimulation of the pituitary-adrenocortical axis by nerve growth factor.Nature 282, 1713–1721.CrossRefGoogle Scholar
  171. Pacak K., McCarty R., Palkovits M., Cizza G., Kopin I., Glodstein D. S., et al. (1995) Decreased central and peripheral catecholaminergic activation in obese Zucker rats.Endocrinology 136, 4360–4367.PubMedCrossRefGoogle Scholar
  172. Pasquali R., Anconetani B., Chattat R., Biscotti M., Spinucci G., Casimirri F., et al. (1996) Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: Effects of the corticotropin-releasing factor/arginine vasopressin test and of stress.Metabolism 45, 351–356.PubMedCrossRefGoogle Scholar
  173. Pasquali R., Cantobelli S., Casamirri S., et al. (1993) The hypothalamic-pituitary-adrenal, axis in obsese women with different patterns of body fat distribution.J. Clin. Endocrinol. Metab. 77, 341–346.PubMedCrossRefGoogle Scholar
  174. Patchev V. K., Karalis K. and Chrousos G. P. (1994) Effects of excitatory amino acid transmitters on hypothalamic corticotropin-releasing hormone (CRH) and arginive-vasopressin (AVP) release in vitro: implications in pituitary-adrenal regulation.Brain Res. 633, 312–316.PubMedCrossRefGoogle Scholar
  175. Pich E. M., Lorang M., Yeganeh M., Rodriguez de Fonseca F., Raber J., Koob G. F., et al. (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis.J. Neurosci. 15, 5439–5447.Google Scholar
  176. Pitkanen A., Savander V. and LeDoux J. E. (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala.Trends Neurosci. 20, 517–523.PubMedCrossRefGoogle Scholar
  177. Plotsky P. M. and Sawchenko P. E. (1987) Hypophyseal portal plasma levels, median eminence content and immunohistochemical staining of corticotropin releasing factor, arginine vasopressin and oxytocin after pharmacological adrenalectomy.Endocrinology 120, 1361–1369.PubMedGoogle Scholar
  178. Plotsky P. M., Thrivikraman K. V., Watts A. G. and Hauger R. L. (1992) Hypothalamic-pituitaryadrenal axis function in the Zucker obese rat.Endocrinology 130, 1931–1941.PubMedCrossRefGoogle Scholar
  179. Porter R. H. P. and Greenamyre J. T. (1995) Regional variations in the pharmacology of NMDA receptor channel blockers: Implications for therapeutic potential.J. Neurochem. 64, 614–623.PubMedCrossRefGoogle Scholar
  180. Poucet B. and Benhanou S. (1997) The neuropsychology of spatial cognition in the rat.Crit. Rev. Neurobiol. 11, 101–120.PubMedGoogle Scholar
  181. Quirarte G. L., Roozendaal B. and McGaugh J. L. (1997) Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala.Proc. Natl. Acad. Sci. USA 94, 14048–14053.PubMedCrossRefGoogle Scholar
  182. Raber J., Chen S., Mucke L. and Feng L. (1997a) Corticotropin-releasing, factor and adrenocorticotrophic hormone as potential central mediators of OB effects.J. Biol. Chem. 272, 15057–15060.PubMedCrossRefGoogle Scholar
  183. Raber J., O'Shea R. D., Bloom F. E. and Campbell I. L. (1997b) Modulation of hypothalamic-pituitary-adrenal function by transgenic expression of interleukin-6 in the CNS of mice.J. Neurosci. 17, 9743–9480.Google Scholar
  184. Raber J., Toggas S. M., Lee S., Bloom F. E., Epstein C. J. and Mucke L. (1996) Central nervous system expression of HIV-1 gp120 activates the hypothalamic-pituitary.-adrenal axis: Evidence for involvement of NMDA receptors and nitric oxide synthase.Virology 226, 362–373.PubMedCrossRefGoogle Scholar
  185. Rapp P. R. and Gallagher M. (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits.Proc. Natl. Acad. Sci. USA 93, 9926–9930.PubMedCrossRefGoogle Scholar
  186. Redgate E. S. and Fahringer E. E. (1973) A comparison of the pituitary adrenal activity elicited by electrical stimulation of preoptic, amygdaloid and hypothalamic sites in the rat brain.Neuroendocrinology 12, 334–343.PubMedGoogle Scholar
  187. Reid I. R., Wattie D. J., Evans M. C. and Stapleton J. P. (1996) Testosterone therapy in glucocorticoidtreated men.Arch. Med. 156, 1173–1177.CrossRefGoogle Scholar
  188. Reul J. M. H. M. and De Kloet E. R. (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain within vitro autoradiography and computerized image analysis.J. Steroid Biochem. 24, 269–272.PubMedCrossRefGoogle Scholar
  189. Reus V. I. (1984) Hormonal mediation of the memory disorder in depression.Drug Dev. Res. 4, 489–500.CrossRefGoogle Scholar
  190. Reyes A., Luckhaus J. and Ferin M. (1990) Unexpected inhibitory action ofN-methyl-d-aspartate on luteinizing hormone release in adult ovariectomized rhesus monkeys: A role for the hypothalamic-pituitary-adrenal axis.Endocrinology 127, 724–729.PubMedGoogle Scholar
  191. Ribeiro E. B., do Nascimento C. M., Andrade I. S., Hirata A. E. and Dolnikoff M. S. (1997) Hormonal and metabolic adaptations to fasting in monosodium glutamate-obese rats.J. Comp. Biol. 167, 430–437.Google Scholar
  192. Richard D., Rivest R., Naimi N., Timofeeva E. and Rivest S. (1996) Expression of corticotropinreleasing factor and its receptors in the brain of lean and obese Zucker rats.Endocrinology 137, 4786–4795.PubMedCrossRefGoogle Scholar
  193. Rivest S. and Richard D. (1990) Involvement of corticotropin-releasing factor in the anorexia induced by exercise.Brain Res. Bull. 25, 169–172.PubMedCrossRefGoogle Scholar
  194. Robinson M. B. and Coyle J. T. (1987) Glutamate and related acidic excitatory neurotransmitters: From basic science to clinical application.FASEB J. 1, 446–455.PubMedGoogle Scholar
  195. Rohner-Jeanrenaud F., Walker C. D., Greco-Perotto R. and Jeanrenaud B. (1989) Central corticotropin-releasing factor administration prevents excessive body weight gain of genetically obese (fa/fa) rats.Endocrinology 124, 733–739.PubMedGoogle Scholar
  196. Rothstein J. D. (1996) Excitotoxicity hypothesis.Neurology 47, S19-S25.PubMedGoogle Scholar
  197. Rothstein J. D. and Kuncl R. W. (1995) Neuroprotective strategies in a model of chronic glutamatemediated motor neuron toxicity.J. Neurochem. 65, 643–651.PubMedCrossRefGoogle Scholar
  198. Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate.Neuron 16, 675–686.PubMedCrossRefGoogle Scholar
  199. Rothwell N. J. (1990) Central activation of thermogenesis by prostaglandins: dependence on CRF.Horm. Metab. Res. 22, 616–618.PubMedGoogle Scholar
  200. Saito M. and Bray G. A. (1984) Adrenalectomy and food restriction in the genetically obese (ob/ob) mouse.Am. J. Physiol. 246, R20–25.PubMedGoogle Scholar
  201. Sakanaka M., Shibasaki T. and Lederis K. (1986) Distribution and efferent projections of corticotropinreleasing factor-like immunoreactivity in the rat amygdaloid complex.Brain Res. 382, 213–238.PubMedCrossRefGoogle Scholar
  202. Sandberg M., Butcher S. P. and Hagberg H. (1986) Extracellular overflow of neuroactive amino acids during severe, insulin-induced hypoglycemia:in vivo dialysis of the rat hippocampus.J. Neurochem. 47, 178–184.PubMedCrossRefGoogle Scholar
  203. Saphier D. (1987) Cortisol alters firing rate and synaptic responses of limbic forebrain units.Brain Res. Bull. 19, 519–524.PubMedCrossRefGoogle Scholar
  204. Sapolsky R. M. (1992)Stress, the Aging Brain, and the Mechanisms of Neuron Death. MIT Press, Cambridge, MA.Google Scholar
  205. Sapolsky R. M. (1994) Individual differences and the stress response.,Semin. Neurosci. 6, 261–269.CrossRefGoogle Scholar
  206. Sapolsky R. M. (1996) Stress, glucocorticoids, and damage to the nervous system: The current state of confusion.Stress 1, 1–19.PubMedGoogle Scholar
  207. Sapolsky R. M., Krey L. C. and McEwen B. S. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging.J. Neurosci. 5, 1222–1227.PubMedGoogle Scholar
  208. Sapse A. T. (1997) Cortisol, high cortisol diseases and anti-cortisol therapy.Psychoneuroendocrinology 22 Suppl. 1, S3-S10.PubMedCrossRefGoogle Scholar
  209. Scaccianoce S., Musculo L. A. A., Cigliana G., Navarra D., Nicolai R. and Angelucci L. (1991) Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in rat.Endocrinology 128, 3138–3143.PubMedGoogle Scholar
  210. Scheinman R. I., Cogswell P. C., Lofquist A. K. and Baldwin A. S. (1995) Role of transcriptional activation of Iκ Bα in mediation of immunosuppression by glucocorticoids.Science 270, 283–286.PubMedCrossRefGoogle Scholar
  211. Schmidt E. D., Binnekade R., Janszen A. W. and Tilders F. J. (1996) Short stressor induced longlasting increases of vasopressin stores in hypothalamic corticotropin-releasing hormone (CRH)-neurons in adult rats.J. Neuroendocrinol. 8, 703–712.PubMedCrossRefGoogle Scholar
  212. Schmidt E. D., Janszen A. W., Wouterlood, F. G. and Tilders F. J. (1995) Interleukin-1-induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH)-neurons and hyperresponsiveness of the hypothalamus-pituitary-adrenal axis.J. Neurosci. 15, 7417–7426.PubMedGoogle Scholar
  213. Scott H. L., Tannenberg A. E. G. and Dodd P. R. (1995) Variant forms of neuronal glutamate transporter sites in Alzheimer's disease cerebral cortex.J. Neurochem. 64, 2193–2202.PubMedCrossRefGoogle Scholar
  214. Scully J. L. and Otten U. (1995a) Neurotrophin expression modulated by glucocorticoids and oestrogen in immortalized hippocampal neurons.Mol. Brain Res. 31, 158–164.PubMedCrossRefGoogle Scholar
  215. Scully J. L. and Otten U. (1995b) Glucocorticoids, neurotrophins and neurodegeneration.J. Steroid Biochem. Mol. Biol. 52, 391–401.PubMedCrossRefGoogle Scholar
  216. Segal R. A., Pomeroy, S. L. and Stiles, C. D. (1995) Axonal growth and fasicculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells.J. Neurosci. 15, 4970–4981.PubMedGoogle Scholar
  217. Shibasaki T., Yamauchi N., Kato Y., Masuda A., Imaki T., Hotta M., et al. (1988) Involvement of corticotropin-releasing factor in restraint stress-induced anorexia and reversion of the anorexia by somatostatin in the rat.Life Sci. 43, 1103–1110.PubMedCrossRefGoogle Scholar
  218. Silverstein F. S., Buchanan K. and Johnston M. V. (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes.J. Neurochem. 47, 1614–1619.PubMedCrossRefGoogle Scholar
  219. Singh V. B., Onaivi E. S., Phan T.-H. and Boadle-Biber M. C. (1990) The increases in rat cortical and midbrain tryptophan hydroxylase activity in response to acute or repeated sound stress are blocked by bilateral lesions to the central nucleus of the amygdala.,Brain Res. 530, 49–53.PubMedCrossRefGoogle Scholar
  220. Slieker L. J., Sloop K. W., Surface P. L., Kriauciunas A., LaQuier F., Manetta J., et al. (1996) Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP.J. Biol. Chem. 271, 5301–5304.PubMedCrossRefGoogle Scholar
  221. Smith M. A. (1996) Hippocampal vulnerability to stress and aging: Possible role of neurotrophic factors.Behav. Brain Res. 78, 25–36.PubMedCrossRefGoogle Scholar
  222. Smith M. A., Makino S., Altemus M., Michelson D., Hong S. K., Kvetnansky R., et al. (1995) Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus.Proc. Natl. Acad. Sci. USA 92, 8788–8792.PubMedCrossRefGoogle Scholar
  223. Smythe J. W., Murphy D., Timothy C. and Costall B. (1997) Hippocampal mineralocorticoid, but not glucocorticoid, receptors modulate anxiety-like behaviour in rats.Pharmacol. Biochem. Behav. 56, 507–513.PubMedCrossRefGoogle Scholar
  224. Spath-Schwalbe E., Born J., Schrezenmeier H., Bornstein S. R., Stromeyer P., Drechsler S., et al. (1994) Interleukin-6 stimulates the hypothalamus-pituitary-adrenocortical axis in man.J. Clin. Endocrinol. Metab. 79, 1212–1214.PubMedCrossRefGoogle Scholar
  225. Spina M., Merlo-Pich E., Chan R. K., Basso A. M., Rivier J., Vale W. et al. (1996) Appetite-suppressing effects of urocortin, a CRF-related neuropeptide.Science 273, 1561–1564.PubMedCrossRefGoogle Scholar
  226. Starkman M. N., Schteingart D. E. and Schork M. A. (1986) Cushing's syndrome after treatment: changes in cortisol and ACTH levels, and amelioration of the depressive syndrome.Psychiatry Res. 19, 177–188.PubMedCrossRefGoogle Scholar
  227. Stein-Behrens B. A., Elliot E. M., Miller C. A., Schilling J. W., Newcombe R. and Sapolsky R. M. (1992) Glucocorticoids exacerbate kainic acid-induced extracellular accumulation of excitatory amino acids in the rat hippocampus.J. Neurochem. 58, 1730–1736.PubMedCrossRefGoogle Scholar
  228. Stein-Behrens B. A., Lin W. J. and Sapolsky R. M. (1994) Physiological elevations of glucocorticiods potentiate glutamate accumulation in the hippocampus.J. Neurochem. 63, 596–602.PubMedCrossRefGoogle Scholar
  229. Sutton R. E., Koob G. F., Moal M. L., Rivier J. and Vale W. (1982) Corticotropin releasing factor produces behavioural activation in rats.Nature 297, 331–333.PubMedCrossRefGoogle Scholar
  230. Takahashi L. K., Kalin N. H., Burgt J. A. V. and Sherman J. E. (1989) Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats.Behav. Neurosci. 103, 648–654.PubMedCrossRefGoogle Scholar
  231. Tannahill L. A., Sheward W. J., Robinson I. C. and Fink G. (1991) Corticotrophin-releasing factor-41, vasopressin and oxytocin release into hypophysial portal blood in the rat: effects of electrical stimulation of the hypothalamus, amygdala and hippocampus.J. Endocrinol. 129, 99–107.PubMedGoogle Scholar
  232. Vago T., Clerici M. and Norbiato G. (1994) Gluco-corticoids and the immune system in AIDS.Bailliere's Clin. Endocrinol. Metab. 8, 789–802.CrossRefGoogle Scholar
  233. Vaughan J., Donaldson C., Bittencourt J., Perrin M. H., Lewis K., Sutton S., et al. (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor.Nature 378, 287–292.PubMedCrossRefGoogle Scholar
  234. Vesce S., Bezzi P., Rossi D., Meldolesi J. and Volterra A. (1997) HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid.FEBS Lett. 411, 107–109.PubMedCrossRefGoogle Scholar
  235. Virgin C., Ha T., Packan D., Tombaugh G., Yang S., Horner H., et al. (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: Implications for glucocorticoid neurotoxicity.J. Neurochem. 57, 1422–1428.PubMedCrossRefGoogle Scholar
  236. Watanabe Y., Gould E., Cameron H. A., Daniels D. C. and McEwen B. S. (1992) Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons.Hippocampus 2, 431–435.PubMedCrossRefGoogle Scholar
  237. Weiner M. F., Vobach S., Olsson K., Svetlik D. and Risser R. C. (1997) Cortisol secretion and Alzheimer's disease progression.Biol. Psychol. 42, 1030–1038.CrossRefGoogle Scholar
  238. Whelan T. B., Schteingart D. E., Starkman M. N. and Smith A. (1980) Neuropsychological deficits in Cushing's syndrome.J. Nerv. Ment. Dis. 168, 753–757.PubMedCrossRefGoogle Scholar
  239. Whitnall M. H. (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system.Prog. Neurobiol. 40, 573–629.PubMedCrossRefGoogle Scholar
  240. Wilckens T. (1995) Glucocorticoids and immune function: physiological relevance and pathogenic potential of hormonal dysfunction.Trends Pharmacol. Sci. 16, 193–197.PubMedCrossRefGoogle Scholar
  241. Wilson L. D., Truong M. P., Narber A. R. and Aoki T. T. (1996) Anterior pituitary and pituitary-dependent target organ function in men infected with the human imunodeficiency virus.Metabol. Clin. Exp. 45, 738–746.Google Scholar
  242. Wolkowitz O. M., Reus V. I., Weingartner H., Thompson K., Breier A., Doran A., et al. (1990) Cognitive effects of corticosteroids in man.Am. J. Psychiatry 147, 1297–1303.PubMedGoogle Scholar
  243. Woolley C. S., Gould E. and McEwen B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.Brain Res. 531, 225–231.PubMedCrossRefGoogle Scholar
  244. Ye Z. C. and Sontheimer H. (1996) Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide.Neuroreport 7, 2181–2185.PubMedCrossRefGoogle Scholar
  245. Yukimara Y., Bray G. A. and Wolfsen A. R. (1978) Some effects of adrenalectomy in the fatty rat.Endocrinology 103, 1924–1928.CrossRefGoogle Scholar
  246. Zerangue N., Arriza J. L. and Kavanaugh M. P. (1995) Differential modulation of human glutamate transporter subtypes by arachidonic acid.J. Biol. Chem. 270, 6433–6435.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Jacob Raber
    • 1
  1. 1.Gladstone Institute of Neurological Diseases and Department of NeurologyUniversity of CaliforniaSan Francisco

Personalised recommendations