Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 4, pp 387–393

New solutions for charged anisotropic fluid spheres in general relativity

  • T. Singh
  • G. P. Singh
  • A. M. Helmi


The general analytical solutions for charged fluid distribution with anisotropic pressure are obtained. These solutions depend on an arbitrary generating function and the choice of an anisotropic function which measures the degree of anisotropy. As an illustration of the procedure some physically important examples are considered.


04.20 General relativity 


04.20.Jb Solutions to equations 


04.50 Unified field theories and other theories of gravitation 
PACS 04.90 Other topics in relativity and gravitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bowers R. L. andLiang E. P. T.,Astrophys. J.,188 (1974) 657.ADSCrossRefGoogle Scholar
  2. [2]
    Cosenza M., Herrera L., Esculpi M. andWitten L.,J. Math. Phys.,22 (1981) 118.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Herrera L. andPonce de Leon J.,J. Math. Phys.,26 (1985) 2302.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Ponce de León J.,Gen. Rel Grav.,19 (1987a) 797.ADSCrossRefGoogle Scholar
  5. [5]
    Ponce de León J.,J. Math. Phys.,28 (1987b) 1114.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Bayin S. S.,Phys. Rev. D,26 (1982) 1262.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Stewart B. W.,J. Phys. A,15 (1982) 2419.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Singh T. andSingh D. K.,Natl. Acad. Math. (India),3 (1985) 55.Google Scholar
  9. [9]
    Maharaj S. D. andMaartens R.,Gen. Rel Grav,21 (1989) 899.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Maharaj S. D. andMaartens R.,A Class of Anisotropic Spheres, CNLS, preprint No. 90-1, Johannesburg, 1990.Google Scholar
  11. [11]
    Ruderman M.,Annu. Rev. Astron. Astrophys.,10 (1972) 427.ADSCrossRefGoogle Scholar
  12. [12]
    Rago H.,Anisotropic spheres in general relativity, ICTP, preprint No. IC/91/13, 1991.Google Scholar
  13. [13]
    Berger S., Hojman R. andSantamarina J.,J. Math. Phys.,28 (1987) 2949.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Singh T., Singh G. P. andSrivastava R. S.,Int. J. Theor. Phys.,31 (1992) 545.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Singh T., Singh G. P. andHelmi A. M.,Static spherically symmetric fluid distribution in relativistic MHD,anisotropic fluid spheres, E-Ctheory and higher dimensional space-time, communicate for publication (1992).Google Scholar
  16. [16]
    Patino A. andRago H.,Gen. Rel Grav.,21 (1989) 637.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Singh T., Singh G. P. andHelmi A. M.,Astrophys. Space Sci.,199 (1993) 113.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    Singh T., Sing G. P. andHelmi A. M.,Hadronic J. (USA), in press.Google Scholar
  19. [19]
    Bayin S. S.,Phys. Rev. D,18 (1978) 2745.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Gaete P. andHojman R.,J. Math. Phys.,31 (1990) 140.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    Tolman R. C.,Phys. Rev.,55 (1939) 364.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • T. Singh
    • 1
  • G. P. Singh
    • 1
  • A. M. Helmi
    • 1
  1. 1.Department of Applied MatematicsInstitute of Technology Banaras Hindu UniversityVaranasiIndia

Personalised recommendations