Molecular Neurobiology

, Volume 16, Issue 3, pp 285–309 | Cite as

Tyrosine hydroxylase and Parkinson's disease

  • Jan Haavik
  • Karen Toska

Abstract

A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation ofl-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditaryl-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment withl-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated thatl-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.

Index entries

Neurodegeneration dopamine iron oxidant stress mutations pathogenesis etiology gene therapy transplantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1989) Effect of deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group.N. Engl. J. Med. 321, 1364–1371.Google Scholar
  2. (1993) Mutations in the copper- and zinc-containing superoxide dismutase gene are associated with “Lou Gehrig's Disease”.Nutr. Rev. 51, 243–245.Google Scholar
  3. (1995) Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson's disease. Parkinson Study Group.Arch. Neurol. 52, 237–245.Google Scholar
  4. Adler C., Ghisla S., Rebrin I., Haavik J., Heizmann C. W., Blau N., Kuster T., and Curtius H. C. (1992) 7-substituted pterins in humans with suspected pterin-4a-carbinolamine dehydratase deficiency Mechanism of formation via non-enzym transformation from 6-substituted pterins.E Biochem. 208, 139–144.CrossRefGoogle Scholar
  5. Albino Teixeira A., Azevedo I., Martel F., and Wald W. (1991) Superoxide dismutase par prevents sympathetic denervation by 6-hyd dopamine.Naunyn Schmiedebergs Arch. Ph col. 344, 36–40.Google Scholar
  6. Almås B., Le Bourdelles B., Flatmark T., Ma and Haavik J. (1992) Regulation of recom human tyrosine hydroxylase isozymes b cholamine binding and phosphorylation ture/activity studies and mechanistic implications.Eur. J. Biochem. 209, 249–255.PubMedCrossRefGoogle Scholar
  7. Andersson K. K., Cox D. D., Que L. Jr., Flatmark T., and Haavik J. (1988) Resonance Raman studies on the blue-green-colored bovine adrenal tyrosine 3-monooxygenase (tyrosine hydroxylase). Evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron.J. Biol. Chem. 263, 18,621–18,626.Google Scholar
  8. Anton R., Kordower J. H., Maidment N. T., Manaster J. S., Kane D. J., Rabizadeh S., Schueller S. B., Yang J., Edwards R. H. and et al. (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism.Exp. Neurol. 127, 207–218.PubMedCrossRefGoogle Scholar
  9. Baetge E. E. (1993) Neural stem cells for CNS transplantation.Ann. N.Y. Acad. Sci. 695, 285–291.PubMedCrossRefGoogle Scholar
  10. Bandmann O., Daniel S., Marsden C. D., Wood N. W., and Harding A. E. (1996a) The GTP-cyclohydrolase I gene in atypical parkinsonian patients: a clinico-genetic study.J. Neurol. Sci. 141, 27–32.PubMedCrossRefGoogle Scholar
  11. Bandmann O., Nygaard T. G., Surtees R., Marsden C. D., Wood N. W., and Harding A. E. (1996b) Dopa-responsive dystonia in British patients: new mutations of the GTP-cyclohydrolase I gene and evidence for genetic heterogeneity.Hum. Mol. Genet. 5, 403–406.PubMedCrossRefGoogle Scholar
  12. Barden H. (1969) The histochemical relationship of neuromelanin and lipofuscin.J. Neuropathol. Exp. Neurol. 28, 419–441.PubMedGoogle Scholar
  13. Bartholome K. (1983) Deficiency of tyrosine hydroxylase or tryptophan hydroxylase: a possible cause of two hypothetical metabolic diseases.Acta Paediatr. Scand. 72, 921–922.PubMedGoogle Scholar
  14. Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases.Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar
  15. Bencsics C., Wachtel S. R., Milstien S., Hatakeyama K., Becker J. B., and Kang U. J. (1996) Double transduction with GTP cyclohydrolase I and tyrosine hydroxylase is necessary for spontaneous synthesis ofl-DOPA by primary fibroblasts.J. Neurosci. 16, 4449–4456.PubMedGoogle Scholar
  16. Benedito E., Jimenez C. C., Perez D., Cubillana J. D., nez C. J., Meyer-zum G. A., Lozano ia B. J. (1997) Melanin formation in is catalyzed by a new tyrosine tinetically and structurally different se.Biochim. Biophys. Acta 1336, 59–72.PubMedGoogle Scholar
  17. gan B., Anzivino M., and Hirsh J. ???? vel and major isoform of tyrosine in Drosophila is generated by alter-processing.J. Biol. Chem. 269, ??PubMedGoogle Scholar
  18. Björklund A. (1993) Neurobiology. Better cells for brain repair.Nature 362, 414–415.PubMedCrossRefGoogle Scholar
  19. Blair J. A. and Pearson A. J. (1974) Kinetics and mechanism of autooxidation of the 2- amino-4-hydroxy-5,6,7,8-tetrahydrobiopteridines.J. Chem. Soc. Perkin. Trans. II, 80–88.Google Scholar
  20. Bondy S.C. (1992) Reactive oxygen species: relation to aging and neurotoxic damage.Neurotoxicology 13, 87–100.PubMedGoogle Scholar
  21. Bradbury M.W.B. (1997) Transport of iron in the blood-brain-cerebrospinal fluid system.J. Neurochem. 69, 443–454.PubMedCrossRefGoogle Scholar
  22. Calne D. B. and Takahashi H. (1991) The origin of idiopathic Parkinsonism, inParkinson's: How to Proceed Today in Treatment (Rinne, U. K., Nagatsu T., and Horowski R., eds.) Medicom EW, Bussum, pp. 3–9.Google Scholar
  23. Cano E. and Mahadevan L. C. (1995) Parallel signal processing among mammalian MAPKs.Trends. Biochem. Sci. 20, 117–122.PubMedCrossRefGoogle Scholar
  24. Chen Y., Best J. A., Nagamoto K., and Tank A. W. (1996) Regulation of tyrosine hydroxylase gene expression by the m1 muscarinic acetylcholine receptor in rat pheochromocytoma cells.Brain Res. Mol. Brain Res. 40, 42–54.PubMedCrossRefGoogle Scholar
  25. Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–695.PubMedCrossRefGoogle Scholar
  26. Czyzyk Krzeska M. F., Bayliss D. A., Lawson E. E., and Millhorn D. E. (1992) Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia.J. Neurochem. 58, 1538–1546.PubMedCrossRefGoogle Scholar
  27. Czyzyk Krzeska M. F., Furnari B. A., Lawson E. E., and Millhorn D. E. (1994) Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells.J. Biol. Chem. 269, 760–764.PubMedGoogle Scholar
  28. Czyzyk Krzeska M. F., Paulding W. R., Beresh J. E., and Kroll S. L. (1997) Post-transcriptional regulation of tyrosine hydroxylase gene expression by oxygen in PC12 cells.Kidney Int. 51, 585–590.PubMedCrossRefGoogle Scholar
  29. Dahl H. H. and Mercer J. F. (1986) Isolation and sequence of a cDNA clone which contains the complete coding region of rat phenylalanine hydroxylase. Structural homology with tyrosine hydroxylase, glucocorticoid regulation, and use of alternate polyadenylation sites.J. Biol. Chem. 261, 4148–4153.PubMedGoogle Scholar
  30. Damier P., Hirsch E. C., Zhang P., Agid Y., and Javoy Agid F. (1993) Glutathione peroxidase, glial cells and Parkinson's disease.Neuroscience 52, 1–6.PubMedCrossRefGoogle Scholar
  31. Daubner S. C., Lauriano C., Haycock J. W., and Fitzpatrick P. F. (1992) Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity.J. Biol. Chem. 267, 12639–12646.PubMedGoogle Scholar
  32. Daubner S. C., Lohse D. L., and Fitzpatrick P. F. (1993) Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase.Protein Sci. 2, 1452–1460.PubMedGoogle Scholar
  33. Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L., and Bates G. P. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.Cell 90, 537–548.PubMedCrossRefGoogle Scholar
  34. De La Cruz C. P., Revilla E., Venero J. L., Ayala A., Cano J., and Machado A. (1996) Oxidative inactivation of tyrosine hydroxylase in substantia nigra of aged rat.Free Radic. Biol. Med. 20, 53–61.CrossRefGoogle Scholar
  35. Degl'Innocenti F., Maurello M. T., and Marini P. (1989) A parkinsonian kindred.Ital. J. Neurol. Sci. 10, 307–310.PubMedCrossRefGoogle Scholar
  36. Dexter D. T., Carter C. J., Wells F. R., Javoy Agid F., Agid Y., Lees A., Jenner P., and Marsden C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease.J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  37. Dexter D. T., Wells F. R., Agid F., Agid Y., Lees A. J., Jenner P., and Marsden C. D. (1987) Increased nigral iron content in postmortem parkinsonian brain [letter].Lancet 2, 1219–1220.PubMedCrossRefGoogle Scholar
  38. Dexter D. T., Wells F. R., Lees A. J., Agid F., Agid Y., Jenner P., and Marsden C. D. (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease.J. Neurochem. 52, 1830–1836.PubMedCrossRefGoogle Scholar
  39. Døskeland A. P. and Flatmark T. (1996) Recombinant human phenylalanine hydroxylase is a substrate for the ubiquitin-conjugating enzyme system.Biochem. J. 319, 941–945.PubMedGoogle Scholar
  40. Dumas S., Le Hir H., Bodeau Pean S., Hirsch E., Thermes C., and Mallet J. (1996) New species of human tyrosine hydroxylase mRNA are produced in variable amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy.J. Neurochem. 67, 19–25.PubMedCrossRefGoogle Scholar
  41. During M. J., Naegele J. R., O'Malley K. L., and Geller A. I. (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase.Science 266, 1399–1403.PubMedCrossRefGoogle Scholar
  42. Ebadi M., Srinivasan S. K., and Baxi M. D. (1996) Oxidative stress and antioxidant therapy in Parkinson's disease.Prog. Neurobiol. 48, 1–19.PubMedCrossRefGoogle Scholar
  43. Egensperger R., Kosel S., Schnopp N. M., Mehraein P., and Graeber M. B. (1997) Association of the mitochondrial tRNA(A4336G) mutation with Alzheimer's and Parkinson's diseases.Neuropathol. Appl. Neurobiol. 23, 315–321.PubMedCrossRefGoogle Scholar
  44. Ehringer H. and Hornykiewicz O. (1960) Verteilung von noradrenalin und dopamin (3-hydroxytyramin) in gehirn des menchen und ihr verhalten bei erkrankungen des extrapyramidalen systems.Klin. Wochenschr. 38, 1236–1239.PubMedCrossRefGoogle Scholar
  45. Enochs W. S., Sarna T., Zecca L., Riley P. A., and Swartz H. M. (1994) The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson's disease: a hypothesis.J. Neural Transm. Park. Dis. Dement. Sect. 7, 83–100.PubMedCrossRefGoogle Scholar
  46. Erlandsen H., Fusetti F., Martinez A., Hough E., Flatmark T., and Stevens R. C. (1997a) Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria.Nature Struct. Biol. 4, 995–1000.PubMedCrossRefGoogle Scholar
  47. Erlandsen H., Martinez A., Knappskog P. M., Haavik J., Hough E., and Flatmark T. (1997b) Crystallization and preliminary diffraction analysis of a truncated homodimer of human phenylalanine hydroxylase.FEBS Lett. 406, 171–174.PubMedCrossRefGoogle Scholar
  48. Evans P. H. (1993) Free radicals in brain metabolism and pathology.Br. Med. Bull. 49, 577–587.PubMedGoogle Scholar
  49. Fink J. K., Barton N., Cohen W., Lovenberg W., Burns R. S., and Hallett M. (1988) Dystonia with marked diurnal variation associated with biopterin deficiency.Neurology 38, 707–711.PubMedGoogle Scholar
  50. Fink J. K., Ravin P., Argoff C. E., Levine R. A., Brady R. O., Hallett M., and Barton N. W. (1989) Tetrahydrobiopterin administration in biopterindeficient progressive dystonia with diurnal variation.Neurology 39, 1393–1395.PubMedGoogle Scholar
  51. Fink R. M. and Elstner E. F. (1984) Studies on the possible mechanism of inactivation of phenylalanine hydroxylase by destructive oxygen species.Z. Naturforsch. C. 39, 734–737.PubMedGoogle Scholar
  52. Fisher K. J., Kelley W. M., Burda J. F., and Wilson J. M. (1996) A novel adenovirus-adeno- associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome.Hum. Gene Ther. 7, 2079–2087.PubMedGoogle Scholar
  53. Fisher L. J., Jinnah H. A., Kale L. C., Higgins G. A., and Gage F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to producel-dopa.Neuron 6, 371–380.PubMedCrossRefGoogle Scholar
  54. Fitzpatrick P. F. (1989) The metal requirement of rat tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 161, 211–215.PubMedCrossRefGoogle Scholar
  55. Fossom L. H., Sterling C. R., and Tank A. W. (1992) Regulation of tyrosine hydroxylase gene transcription rat and tyrosine hydroxylase mRNA stability by cyclic AMP and glucocorticoid.Mol. Pharmacol. 42, 898–908.PubMedGoogle Scholar
  56. Fowler C. J., Wiberg A., Oreland L., Marcusson J., and Winblad B. (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase.J. Neural Transm. 49, 1–20.PubMedCrossRefGoogle Scholar
  57. Freese A., During M. J., Davidson B. L., Gennarelli T. A., Kaplitt M. G., Flamm E. S., and Snyder P. J. (1996) Transfection of human lactotroph adenoma cells with an adenovirus vector expressing tyrosine hydroxylase decreases prolactin release.J. Clin. Endocrinol. Metab. 81, 2401–2404.PubMedCrossRefGoogle Scholar
  58. Gahn L. G. and Roskoski R. Jr. (1995) Thermal stability and CD analysis of rat tyrosine hydroxylase.Biochemistry 24, 252–256.CrossRefGoogle Scholar
  59. Gasser T., Wszolek Z. K., Trofatter J., Ozelius L., Uitti R. J., Lee C. S., Gusella J., Pfeiffer, R. F., Calne D. B., and Breakefield X. O. (1994) Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes.Ann. Neurol. 36, 387–396.PubMedCrossRefGoogle Scholar
  60. Gerlach M., Ben Shachar D., Riederer P., and Youdim M. B. (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases?J. Neurochem. 63, 793–807.PubMedCrossRefGoogle Scholar
  61. Glorioso J. C., DeLuca N. A., and Fink D. J. (1995) Development and application of herpes simplex virus vectors for human gene therapy.Annu. Rev. Microbiol. 49, 675–710.PubMedCrossRefGoogle Scholar
  62. Goc A. and Stachowiak M. K. (1994) Bovine tyrosine hydroxylase gene-promoter regions involved in basal and angiotensin II-stimulated expression in nontransformed adrenal medullary cells.J. Neurochem. 62, 834–843.PubMedCrossRefGoogle Scholar
  63. Golbe L. I., Di Iorio G., Bonavita V., Miller, D. C., and Duvoisin R. C. (1990) A large kindred with autosomal dominant Parkinson's disease.Ann. Neurol. 27, 276–282.PubMedCrossRefGoogle Scholar
  64. Goldstein M. (1995) Long- and short-term regulation of tyrosine hydroxylase. InPsychopharmacology: The Fourth Generation of Progress (Bloom F. E. and Kupfer D. J., eds.), pp. 189–195. Raven Press, Ltd., New York.Google Scholar
  65. Goodwill K. E., Sabatier C., Marks C., Raag R., Fitzpatrick P. F., and Stevens R. C. (1997) Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerated diseases.Nature Struct. Biol. 4, 578–585.PubMedCrossRefGoogle Scholar
  66. Graham D. G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol. 14, 633–643.PubMedGoogle Scholar
  67. Granholm A. C., Srivastava N., Mott J. L., Henry S., Henry M., Westphal H., Pichel J. G., Shen L., and Hoffer B. J. (1997) Morphological alterations in the peripheral and central nervous systems of mice lacking glial cell line-derived neurotrophic factor (GDNF): immunohistochemical studies.J. Neurosci. 17, 1168–1178.PubMedGoogle Scholar
  68. Grima B., Lamouroux A., Boni C., Julien J. F., Javoy-Agid F., and Mallet J. (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics.Nature 326, 707–711.PubMedCrossRefGoogle Scholar
  69. Gutteridge J. M. (1994) Biological origin of free radicals, and mechanisms of antioxidant protection.Chem. Biol. Interact. 91, 133–140.PubMedCrossRefGoogle Scholar
  70. Haavik J. (1997) L-DOPA is a substrate for tyrosine hydroxylase.J. Neurochem. 69, 1720–1728.PubMedCrossRefGoogle Scholar
  71. Haavik J. and Flatmark T. (1987) Isolation and characterization of tetrahydropterin oxidation products generated in the tyrosine 3-monooxygenase (tyrosine hydroxylase) reaction.Eur. J. Biochem. 168, 21–26.PubMedCrossRefGoogle Scholar
  72. Haavik J., Almås B., and Flatmark T. (1997a) Generation of reactive oxygen species by tyrosine hydroxylase: a possible contribution to the degeneration of dopaminergic neurons?J. Neurochem. 68, 328–332.PubMedCrossRefGoogle Scholar
  73. Haavik J., Thomas G., Sutherland C., and Cohen P. (1997b) Activation of tyrosine hydroxylase by phosphorylation. A comparison of different protein kinases and phosphorylation sites, inChemistry and Biology of Pteridines and Folates (Pfleiderer W. and Rokos H., eds.) 11th International Symposium, Blackwell Science, Berlin pp. 509–514.Google Scholar
  74. Haavik J., Le Bourdelles B., Martinez A., Flatmark T., and Mallet J. (1991) Recombinant human tyrosine hydroxylase isozymes. Reconstitution with iron and inhibitory effect of other metal ions.Eur. J. Biochem. 199, 371–378.PubMedCrossRefGoogle Scholar
  75. Haavik J., Martinez, A., and Flatmark T. (1990) pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser-40.FEBS Lett. 262, 363–365.PubMedCrossRefGoogle Scholar
  76. Haavik J., Martinez A., Olafsdottir S., Mallet J., and Flatmark T. (1992) The incorporation of divalent metal ions into recombinant human tyrosine hydroxylase apoenzymes studied by intrinsic fluorescence and 1H-NMR spectroscopy.Eur. J. Biochem. 210, 23–31.PubMedCrossRefGoogle Scholar
  77. Han S., Eltis L. D., Timmis K. N., Muchmore S. W., and Bolin J. T. (1995) Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad.Science 270, 976–980.PubMedCrossRefGoogle Scholar
  78. Haycock J. W. (1993) Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40.Neurochem. Res. 18, 15–26.PubMedCrossRefGoogle Scholar
  79. He Y., Thong P. S., Lee T., Leong S. K., Shi C. Y., Wong P. T., Yuan S. Y., and Watt F. (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study.Brain Res. 735, 149–153.PubMedCrossRefGoogle Scholar
  80. Hearing V. J. and Jimenez M. (1987) Mammalian tyrosinase—the critical regulatory control point in melanocyte pigmentation.Int. J. Biochem. 19, 1141–1147.PubMedCrossRefGoogle Scholar
  81. Heintz N. and Zoghbi H. (1997) α-synuclein—a link between Parkinson and Alzheimer diseases?Nat. Genet. 16, 325–327.PubMedCrossRefGoogle Scholar
  82. Hillas P. J. and Fitzpatrick P. F. (1996) A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines.Biochemistry 35, 6968–6975.CrossRefGoogle Scholar
  83. Hirsch E. C. (1994) Biochemistry of Parkinson's disease with special reference to the dopaminergic systems.Mol. Neurobiol. 9, 135–142.PubMedGoogle Scholar
  84. Hirsch E. C. (1993) Does oxidative stress participate in nerve cell death in Parkinson's disease?Eur. Neurol. 33 Suppl. 1, 52–59.PubMedGoogle Scholar
  85. Horellou P., Brundin P., Kalen P., Mallet J., and Björklund A. (1990) In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum.Neuron 5, 393–402.PubMedCrossRefGoogle Scholar
  86. Horellou P., Vigne E., Castel M. N., Barneoud P., Colin P., Perricaudet M., Delaere P., and Mallet J. (1994) Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease.Neuroreport.6, 49–53.PubMedCrossRefGoogle Scholar
  87. Hou J. G., Lin L. F., and Mytilineou C. (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium.J. Neurochem. 66, 74–82.PubMedCrossRefGoogle Scholar
  88. Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D. Squinto S. P. and Lindsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra.Nature 350, 230–232.PubMedCrossRefGoogle Scholar
  89. Ichinose H., Ohye T., Takahashi E., Seki N., Hori T., Segawa M., Nomura Y., Endo K., Tanaka H., Tsuji S., and et al (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene.Nat. Genet. 8, 236–242.PubMedCrossRefGoogle Scholar
  90. Ikebe S., Tanaka M., Ohno K., Sato W., Hattori K., Kondo T., Mizuno Y., and Ozawa T. (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence.Biochem. Biophys. Res. Commun. 170, 1044–1048.PubMedCrossRefGoogle Scholar
  91. Ischiropoulos H., Duran D., and Horwitz J. (1995) Peroxynitrite-mediated inhibition of DOPA synthesis in PC12 cells.J. Neurochem. 65, 2366–2372.PubMedCrossRefGoogle Scholar
  92. Ishida A., Yamashiro K., Mukawa J., and Hasegawa M. (1996) Regulation ofl-DOPA production by genetically modified primary fibroblasts transfected with retrovirus vector system.Cell Transplant. 5, S5-S7.PubMedCrossRefGoogle Scholar
  93. Jenner P. (1991) Oxidative stress as a cause of Parkinson's disease.Acta Neurol. Scand. Suppl. 136, 6–15.PubMedCrossRefGoogle Scholar
  94. Jenner P. and Olanow C. W. (1996) Oxidative stress and the pathogenesis of Parkinson's disease.Neurology 47, S161–170.PubMedGoogle Scholar
  95. Kapatos G., Hirayama K., and Stegenga S. (1997) Clinical relevance and molecular mechanisms of heterogenety in tetrahydrobiopterin biosynthesis within monoaminergic neurons.Pteridines 8, 64.Google Scholar
  96. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O'Malley K. L., and During M. J. (1994) Long-term gene expression and phenotypic correction using adeno- associated virus vectors in the mammalian brain.Nat. Genet. 8, 148–154.PubMedCrossRefGoogle Scholar
  97. Kappock T. J. and Caradonna J. P. (1996) Pterindependent amino acid hydroxylases.Chem. Rev 96, 2659–2756.PubMedCrossRefGoogle Scholar
  98. Kaufman S. (1995) Tyrosine hydroxylase.Adv. Enzymol. Relat. Areas. Mol. Biol. 70, 103–220.PubMedCrossRefGoogle Scholar
  99. Kehrer J. P. (1993) Free radicals as mediators of tissue injury and disease.Crit. Rev. Toxicol. 23, 21–48.PubMedGoogle Scholar
  100. Kim K. S., Park D. H., Wessel T. C., Song B., Wagner J. A., and Joh T. H. (1993) A dual role for the cAMP-dependent protein kinase in tyrosine hydroxylase gene expression.Proc. Natl. Acad. Sci. USA. 90, 3471–3475.PubMedCrossRefGoogle Scholar
  101. Knappskog P. M., Flatmark T., Mallet J., Lüdecke B., and Bartholome K. (1995) Recessively inheritedl-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene.Hum. Mol. Genet. 4, 1209–1212.PubMedCrossRefGoogle Scholar
  102. Kobayashi K., Morita S., Sawada H., Mizuguchi T., Yamada K., Nagatsu I., Hata T., Watanabe Y., Fujita K., and Nagatsu T. (1995) Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice.J. Biol. Chem. 270, 27,235–27,243.Google Scholar
  103. Kosel S., Egensperger R., Schnopp N. M., and Graeber M. B. (1997) The ‘common deletion’ is not increased in parkinsonian substantia nigra as shown by competitive polymerase chain reaction.Mov. Disord. 12, 639–645.PubMedCrossRefGoogle Scholar
  104. Kumer S. C. and Vrana K. E. (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression.J. Neurochem. 67, 443–462.PubMedCrossRefGoogle Scholar
  105. Kummer J. L., Rao P. K., and Heidenreich K. A. (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase.J. Biol. Chem. 272, 20,490–20,494.CrossRefGoogle Scholar
  106. Kupke K. G., Graeber M. B., and Muller U. (1992) Dystonia-parkinsonism syndrome (XDP) locus: flanking markers in Xq12-q21.1..Am. J. Hum. Genet. 50, 808–815.PubMedGoogle Scholar
  107. Kyriakis J. M. and Avruch J. (1996) Protein kinase cascades activated by stress and inflammatory cytokines.Bioessays 18, 567–577.PubMedCrossRefGoogle Scholar
  108. Laniece P., Le-Hir H., Bodeau-Pean S., Charon Y., Valentin L., Thermes C., Mallet, J., and Dumas S. (1996) A novel rat tyrosine hydroxylase mRNA species generated by alternative splicing.J. Neurochem. 66, 1819–1825.PubMedCrossRefGoogle Scholar
  109. Levivier M., Przedborski S., Bencsics C., and Kang U. J. (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease.J. Neurosci. 15, 7810–7820.PubMedGoogle Scholar
  110. Lewis D. A., Melchitzky D. S., and Haycock J. W. (1993) Four isoforms of tyrosine hydroxylase are expressed in human brain.Neuroscience 54, 477–492.PubMedCrossRefGoogle Scholar
  111. Linert W., Herlinger E., Jameson R. F., Kienzl E., Jellinger K., and Youdim M. B. (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen—their mutual interactions and possible implication in the development of Parkinson's disease.Biochim. Biophys. Acta 1316, 160–168.PubMedGoogle Scholar
  112. Lüdecke B., Dworniczak B., and Bartholome K. (1995) A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome.Hum. Genet. 95, 123–125.PubMedGoogle Scholar
  113. Lüdecke B., Knappskog P. M., Clayton P. T., Surtees R. A. Clelland J. D., Heales S. J., Brand M. P., Bartholome K., and Flatmark T. (1996) Recessively inheritedl-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene.Hum. Mol. Genet. 5, 1023–1028.PubMedCrossRefGoogle Scholar
  114. Lundberg C., Horellou P., Mallet J., and Björklund A. (1996) Generation of DOPA-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene: in vitro characterization and in vivo effects in the rat Parkinson model.Exp. Neurol. 139, 39–53.PubMedCrossRefGoogle Scholar
  115. Mallet J. (1996) The TiPS/TINS lecture. Catecholamines: from gene regulation to neuropsychiatric disorders.Trends. Pharmacol. Sci. 17, 129–135.PubMedCrossRefGoogle Scholar
  116. Mann V. M., Cooper J. M., and Schapira A. H. (1992) Quantitation of a mitochondrial DNA deletion in Parkinson's disease.FEBS Lett. 299, 218–222.PubMedCrossRefGoogle Scholar
  117. Martinez A., Abeygunawardana C., Haavik J., Flatmark T., and Mildvan A. S. (1993) Conformation and interaction of phenylalanine with the divalent cation at the active site of human recombinant tyrosine hydroxylase as determined by proton NMR.Biochemistry 32, 6381–6390.PubMedCrossRefGoogle Scholar
  118. McRitchie D. A., Cartwright H. R., and Halliday G. M. (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson's disease.Exp. Neurol. 144, 202–213.PubMedCrossRefGoogle Scholar
  119. Mecocci P., MacGarvey U., Kaufman A. E., Koontz D., Shoffner J. M., Wallace D. C., and Beal M. F. (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain.Ann. Neurol. 34, 609–616.PubMedCrossRefGoogle Scholar
  120. Mendez I., Sadi D., and Hong M. (1996) Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants.J. Neurosci. 16, 7216–7227.PubMedGoogle Scholar
  121. Meyer Klaucke W., Winkler H., Schunemann V., Trautwein A. X., Nolting H. F., and Haavik J. (1996) Mossbauer, electron-paramagnetic-resonance and X-ray-absorption fine-structure studies of the iron environment in recombinant human tyrosine hydroxylase.Eur. J. Biochem. 241, 432–439.PubMedCrossRefGoogle Scholar
  122. Michaud Soret I., Andersson K. K., Que L. Jr., and Haavik J. (1995) Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase.Biochemistry 34, 5504–5510.PubMedCrossRefGoogle Scholar
  123. Miller N. and Vile R. (1995) Targeted vectors for gene therapy.FASEB J. 9, 190–199.PubMedGoogle Scholar
  124. Miranda M., Botti D., and Di Cola M. (1984) Possible genotoxicity of melanin synthesis intermedia-ates: tyrosinase reaction products interact with DNA in vitro.Mol. Gen. Genet. 193, 395–399.PubMedCrossRefGoogle Scholar
  125. Moffat M., Harmon S., Haycock J., and O'Malley K. L. (1997)l-Dopa and dopamine-producing gene cassettes for gene therapy approaches to Parkinson's disease.Exp. Neurol. 144, 69–73.PubMedCrossRefGoogle Scholar
  126. Mogi M., Harada M., Kiuchi K., Kojima K., Kondo T., Narabayashi H., Rausch D., Riederer P., Jellinger K., and Nagatsu T. (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain.J. Neural Transm. 72, 77–82.PubMedCrossRefGoogle Scholar
  127. Moore M. W., Klein R. D., Farinas I., Sauer H., Armanini M., Phillips H., Reichardt L. F., Ryan A. M., Carver Moore K., and Rosenthal A. (1996) Renal and neuronal abnormalities in mice lacking GDNF.Nature 382, 76–79.PubMedCrossRefGoogle Scholar
  128. Nagatsu T. (1995) Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology.Essays. Biochem. 30, 15–35.PubMedGoogle Scholar
  129. Nagatsu T., Levitt M., and Udenfriend S. (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis.J. Biol. Chem. 239, 2910–2917.PubMedGoogle Scholar
  130. Nakao N., Frodl E. M., Duan W. M., Widner H., and Brundin P. (1994) Lazaroids improve the survival of grafted rat embryonic dopamine neurons.Proc. Natl. Acad. Sci. USA 91, 12,408–12,412.CrossRefGoogle Scholar
  131. Nygaard T. G., Marsden C. D., and Duvoisin R. C. (1988) Dopa-responsive dystonia.Adv. Neurol. 50, 377–384.PubMedGoogle Scholar
  132. Okun M. R., Patel R. P., Donnellan B., Lever W. F., Edelstein L. M., and Epstein D. (1971) DOPA compared with dihydroxyfumarate as co-factor in peroxidase-mediated oxidation of tyrosine to melanin. Histochemical studies with neutrophils, eosinophils, mast cells, melanoma cells and neurons.Histochemie. 27, 331–334.PubMedCrossRefGoogle Scholar
  133. Okuno S. and Fujisawa H. (1991) Conversion of tyrosine hydroxylase to stable and inactive form by the end products.J. Neurochem. 57, 53–60.PubMedCrossRefGoogle Scholar
  134. Olanow C. W., Kordower J. H., and Freeman T. B. (1996) Fetal nigral transplantation as a therapy for Parkinson's disease.Trends. Neurosci. 19, 102–109.PubMedCrossRefGoogle Scholar
  135. Oreland L. (1991) Monoamine oxidase, dopamine and Parkinson's disease.Acta Neurol. Scand. Suppl. 136, 60–65.PubMedGoogle Scholar
  136. Ota A., Yoshida S., and Nagatsu T. (1996) Regulation of N-terminus-deleted human tyrosine hydroxylase type 1 by end products of catecholamine biosynthetic pathway.J. Neurol. Transm. 103, 1415–1428.CrossRefGoogle Scholar
  137. Ozelius L., Kramer P. L., Moskowitz C. B., Kwiatkowski D. J., Brin M. F., Bressman S. B., Schuback D. E., Falk C. T., Risch N., de Leon D., and et al (1989) Human gene for torsion dystonia located on chromosome 9q32-q34.Neuron 2, 1427–1434.PubMedCrossRefGoogle Scholar
  138. Plante Bordeneuve V., Davis M. B., Maraganore D. M., Marsden C. D., and Harding A. E. (1994) Tyrosine hydroxylase polymorphism in familial and sporadic Parkinson's disease.Mov. Disord. 9, 337–339.PubMedCrossRefGoogle Scholar
  139. Poirier J., Kogan S., and Gauthier S. (1991) Environment genetics and idiopathic Parkinson's disease.Can. J. Neurol. Sci. 18, 70–76.PubMedGoogle Scholar
  140. Polymeropoulos M. H., Higgins J. J., Golbe L. I., Johnson W. G., Ide S. E., Di Iorio G., Sanges G., Stenroos E. S., Pho L. T., Schaffer A. A., Lazzarini A. M., Nussbaum R. L., and Duvoisin R. C. (1996) Mapping of a gene for Parkinson's disease to chromosome 4q21-q23.Science 274, 1197–1199.PubMedCrossRefGoogle Scholar
  141. Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E. S., and Chandrasekharappa S. (1997) Mutation in the α-synuclein gene identified in families with Parkinson's disease.Science 276, 2045–2047.PubMedCrossRefGoogle Scholar
  142. Rajput A. H., Gibb W. R., Zhong X. H., Shannak K. S., Kish S., Chang L. G., and Hornykiewicz O. (1994) Dopa-responsive dystonia: pathological and biochemical observations in a case.Ann. Neurol. 35, 396–402.PubMedCrossRefGoogle Scholar
  143. Ramsey A. J., Daubner S. C., Ehrlich J. I., and Fitzpatrick P. F. (1995) Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidinyl residues.Protein Sci. 4, 2082–2086.PubMedGoogle Scholar
  144. Ramsey A. J., Hillas P. J., and Fitzpatrick P. F. (1996) Characterization of the active site iron in tyrosine hydroxylase. Redox states of the iron.J. Biol. Chem. 271, 24,395–24,400.Google Scholar
  145. Ribeiro P., Wang Y., Citron B. A., and Kaufman S. (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains.J. Mol. Neurosci. 4, 125–139.PubMedGoogle Scholar
  146. Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K., and Youdim M. B. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.J. Neurochem. 52, 515–520.PubMedCrossRefGoogle Scholar
  147. Rodgers A. D. and Curzon G. (1975) Melanin formation by human brain in vitro.J. Neurochem. 24, 1123–1129.PubMedCrossRefGoogle Scholar
  148. Rodriguez G. J., Venero J. L., Vizuete M. L., Cano J., and Machado A. (1997) Deprenyl induces the tyrosine hydroxylase enzyme in the rat dopaminergic nigrostriatal system.Brain Res. Mol. Brain Res. 46, 31–38.CrossRefGoogle Scholar
  149. Rosenblad C., Martinez Serrano A., and Björklund A. (1996) Glial cell line-derived neurotrophic factor increases survival, growth and function of intrastriatal fetal nigral dopaminergic grafts.Neuroscience 75, 979–985.PubMedCrossRefGoogle Scholar
  150. Sanchez M. P., Silos Santiago I., Frisen J., He B., Lira S. A., and Barbacid M. (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF.Nature 382, 70–73.PubMedCrossRefGoogle Scholar
  151. Sandri G., Panfili E., and Ernster L. (1990) Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria: its effect on glutathione levels and Ca2+ efflux.Biochim. Biophys. Acta 1035, 300–305.PubMedGoogle Scholar
  152. Schapira A. H. and Cooper J. M. (1992) Mitochondrial function in neurodegeneration and ageing.Mutat. Res. 275, 133–143.PubMedGoogle Scholar
  153. Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G. P., Davies S. W., Lehrach H. and Wanker E. E. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.Cell 90, 549–558.PubMedCrossRefGoogle Scholar
  154. Schnopp N. M., Kosel S., Egensperger R., and Graeber M. B. (1996) Regional heterogeneity of mtDNA heteroplasmy in parkinsonian brain.Clin. Neuropathol. 15, 348–352.PubMedGoogle Scholar
  155. Scriver C. R., Byck S., Prevost L., and Hoang L. (1996) The phenylalanine hydroxylase locus: a marker for the history of phenylketonuria and human genetic diversity. PAH Mutation Analysis Consortium.Ciba. Found. Symp. 197, 73–90.PubMedGoogle Scholar
  156. Segawa M. (1996) [Segawa disease (hereditary progressive dystonia with marked diurnal fluctuation-HPD) and abnormalities in pteridin metabolism].Rinsho. Shinkeigaku. 36, 1322–1323.PubMedGoogle Scholar
  157. Shults C. W., Kimber T., and Altar C. A. (1995) BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine.Neuroreport. 6, 1109–1112.PubMedCrossRefGoogle Scholar
  158. Slack R. S. and Miller F. D. (1996) Viral vectors for modulating gene expression in neurons.Curr. Opin. Neurobiol. 6, 576–583.PubMedCrossRefGoogle Scholar
  159. Smyth C., Kalsi G., Curtis D., Brynjolfsson J., O'Neill J., Rifkin L., Moloney E., Murphy P., Petursson H., and Gurling H. (1997) Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22.Genomics 39, 271–278.PubMedCrossRefGoogle Scholar
  160. Snyder E. Y., Park K. I., Flax J. D., Liu S., Rosario C. M., Yandava B. D., and Aurora S. (1997) Potential of neural “stem-like” cells for gene therapy and repair of the degenerating central nervous system.Adv. Neurol. 72, 121–132.PubMedGoogle Scholar
  161. Sofic E., Paulus W., Jellinger K., Riederer P., and Youdim M. B. (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J. Neurochem. 56, 978–982.PubMedCrossRefGoogle Scholar
  162. Soong N. W., Hinton D. R., Cortopassi G., and Arnheim N. (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain.Nat. Genet. 2, 318–323.PubMedCrossRefGoogle Scholar
  163. Sparks D. L., Woeltz V. M., and Markesbery W. R. (1991) Alterations in brain monoamine oxidase activity in aging, Alzheimer's disease, and Pick's disease.Arch. Neurol. 48, 718–721.PubMedGoogle Scholar
  164. Stachowiak M. K., Goc A., Hong J. S., Poisner A., Jiang H. K., and Stachowiak E. K. (1994) Regulation of tyrosine hydroxylase gene expression in depolarized non-transformed bovine adrenal medullary cells: second messenger systems and promoter mechanisms.Brain Res. Mol. Brain Res. 22, 309–319.PubMedCrossRefGoogle Scholar
  165. Strange P. G. (1992) Parkinson's disease. InBrain Biochemistry and Brain Disorders (Strange P. G., ed.) Oxford University Press, New York, pp 161–185.Google Scholar
  166. Sutherland C., Alterio J., Campbell D. G., Le-Bourdelles B., Mallet J., Haavik J., and Cohen P. (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2.Eur. J. Biochem. 217, 715–722.PubMedCrossRefGoogle Scholar
  167. Thibaut F., Ribeyre J. M., Dourmap N., Meloni R., Laurent C., Campion D., Ménard J. F., Dollfus S., Mallet J., and Petit M. (1997) Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia.Schizophrenia. Res. 23, 259–264.CrossRefGoogle Scholar
  168. Thomas G., Haavik J., and Cohen P. (1997) Participation of a stress-activated MAP kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells.Eur. J. Biochem. 247, 1180–1189.PubMedCrossRefGoogle Scholar
  169. Thöny B. and Blau N. (1997) Mutations in the GTP cyclohydrolase I and 6-pyruvoyl- tetrahydropterin synthase genes.Hum. Mutat. 10, 11–20.PubMedCrossRefGoogle Scholar
  170. Tsukahara T., Takeda M., Shimohama S., Ohara O., and Hashimoto N. (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys.Neurosurgery 37, 733–739.PubMedCrossRefGoogle Scholar
  171. Tumer N., Brown J. W., Carballeira A., and Fishman L. M. (1996) Tyrosine hydroxylase gene expression in varying forms of human pheochromocytoma.Life Sci. 59, 1659–1665.PubMedCrossRefGoogle Scholar
  172. Vieregge P. (1994) Genetic factors in the etiology of idiopathic Parkinson's disease.J. Neural. Transm. Park. Dis. Dement. Sect. 8, 1–37.PubMedCrossRefGoogle Scholar
  173. Walker S. J., Liu X., Roskoski R., and Vrana K. E. (1994) Catalytic core of rat tyrosine hydroxylase: terminal deletion analysis of bacterially expressed enzyme.Biochim. Biophys. Acta 1206, 113–119.PubMedGoogle Scholar
  174. Walkinshaw G. and Waters C. M. (1995) Induction of apoptosis in catecholaminergic PC12 cells byl-DOPA. Implications for the treatment of Parkinson's disease.J. Clin. Invest. 95, 2458–2464.PubMedGoogle Scholar
  175. Wang Y., Tien L. T., Lapchak P. A., and Hoffer B. J. (1996) GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA-lesioned rats.Cell Tissue Res. 286, 225–233.PubMedCrossRefGoogle Scholar
  176. Warner H. R. (1994) Superoxide dismutase, aging, and degenerative disease.Free Radic. Biol. Med. 17, 249–258.PubMedCrossRefGoogle Scholar
  177. Whittemore E. R., Loo D. T., and Cotman C. W. (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons.Neuroreport. 5, 1485–1488.PubMedCrossRefGoogle Scholar
  178. Wijker M., Wszolek Z. K., Wolters E. C., Rooimans M. A., Pals G., Pfeiffer R. F., Lynch T., Rodnitzky R. L., Wilhelmsen K. C. and Arwert F. (1996) Localization of the gene for rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration to chromosome 17q21.Hum. Mol. Genet. 5, 151–154.PubMedCrossRefGoogle Scholar
  179. Wolff J. A., Fisher L. J., Xu L., Jinnah H. A., Langlais P. J., Iuvone P. M., O'Malley K. L., Rosenberg M. B., Shimohama S., Friedmann T., and et al. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease.Proc. Natl. Acad. Sci. USA 86, 9011–9014.PubMedCrossRefGoogle Scholar
  180. Woodgett J. R., Avruch J., and Kyriakis J. (1996) The stress activated protein kinase pathway.Cancer Surv. 27, 127–138.PubMedGoogle Scholar
  181. Wu D. K. and Cepko C. L. (1994) The stability of endogenous tyrosine hydroxylase protein in PC-12 cells differs from that expressed in mouse fibroblasts by gene transfer.J. Neurochem. 62, 863–872.PubMedCrossRefGoogle Scholar
  182. Wu J., Filer D., Friedhoff A. J., and Goldstein M. (1992) Site-directed mutagenesis of tyrosine hydroxylase. Role of serine 40 in catalysis.J. Biol. Chem. 267, 25754–25758.PubMedGoogle Scholar
  183. Wu R. M., Murphy D. L., and Chiueh C. C. (1996) Suppression of hydroxyl radical formation and protection of nigral neurons by 1-deprenyl (selegiline).Ann. NY Acad. Sci. 786, 379–390.PubMedCrossRefGoogle Scholar
  184. Yoshimoto Y., Lin Q., Collier T. J., Frim D. M., Breakefield X. O., and Bohn M. C. (1995) Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson's disease.Brain Res. 691, 25–36.PubMedCrossRefGoogle Scholar
  185. Youdim M. B. and Riederer P. (1997) Understanding Parkinson's disease.Sci. Am. 276, 52–59.PubMedCrossRefGoogle Scholar
  186. Yurek D. M., Lu W., Hipkens S., and Wiegand S. J. (1996) BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons.Exp. Neurol. 137, 105–118.PubMedCrossRefGoogle Scholar
  187. Zhou Q. Y., Quaife C. J., and Palmiter R. D. (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development.Nature 374, 640–643.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Jan Haavik
    • 1
  • Karen Toska
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations