Computational Statistics

, Volume 20, Issue 4, pp 623–642 | Cite as

A comparison of approaches for valid variogram achievement

  • Raquel Menezes
  • Pilar Garcia-Soidán
  • Manuel Febrero-Bande

Summary

Variogram estimation is a major issue for statistical inference of spatially correlated random variables. Most natural empirical estimators of the variogram cannot be used for this purpose, as they do not achieve the conditional negative-definite property. Typically, this problem’s resolution is split into three stages:empirical variogram estimation;valid model selection; andmodel fitting. To accomplish these tasks, there are several different approaches strongly defended by their authors. Our work’s main purpose was to identify these approaches and compare them based on a numerical study, covering different kind of spatial dependence situations. The comparisons are based on the integrated squared errors of the resulting valid estimators. Additionally, we propose an easily implementable empirical method to compare the main features of the estimated variogram function.

Keywords

Spatial dependence Empirical variogram Valid model Fitting criteria Non-parametric estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cherry, S., Banfield, J. and Quimby, W. (1996), ‘An evaluation of a nonparametric method of estimating semivariograms of isotropic spatial processes’,Journal of Applied Statistics v.17, 563–586.MathSciNetGoogle Scholar
  2. Christakos, G. (1984), ‘On the problem of permissible covariance and variogram models’,Water Resources Res. 20, 251–265.CrossRefGoogle Scholar
  3. Cressie, N. (1985), ‘Fitting variogram models by weighted least squares’,Journal of Int. Association for Mathematical Geology 17, n.5, 563–586.CrossRefMathSciNetGoogle Scholar
  4. Cressie, N. (1993),Statistics for Spatial Data, John Wiley and Sons Inc., New York.Google Scholar
  5. Cressie, N. and Hawkins, D. (1980), ‘Robust estimation of the variogram’,Journal of Int. Association for Mathematical Geology 12, n.2, 115–125.CrossRefMathSciNetGoogle Scholar
  6. Garcia-Soidán, P., Febrero-Bande, M. and Gonzalez-Manteiga, W. (2004), ‘Nonparametric kernel estimation of an isotropic variogram’,J. Statist. Plann. Inference 121, 65–92.MATHCrossRefMathSciNetGoogle Scholar
  7. Genton, M. (1998a), ‘Highly robust variogram estimation’,Journal of Int. Association for Mathematical Geology 30, n.2, 213–221.MATHCrossRefMathSciNetGoogle Scholar
  8. Genton, M. (1998), ‘Variogram fitting by generalized least squares using an explicit formula for the covariance structure’,Journal of Int. Association for Mathematical Geology 30, n.4, 323–345.MATHCrossRefMathSciNetGoogle Scholar
  9. Gorsich, D. and Genton, M. (2000), ‘Variogram model selection via nonparametric derivate estimation’,Journal of Int. Association for Mathematical Geology 32, n.3, 249–270.CrossRefGoogle Scholar
  10. Gribov, A., Krivoruchko, K. and Ver Hoef, J. (2000), ‘Modified weighted least squares semivariogram and covariance model fitting algorithm’,Stochastic Modeling and Geostatistics. AAPG Computer Applications in Geology 2.Google Scholar
  11. Journel, A. and Huijbregts, C. (1978),Mining Geostatistics, Academic Press, London.Google Scholar
  12. Kyung-Joon, C. and Shucany, W. (1998), ‘Nonparametric kernel regression estimation near endpoints’,J. Statist. Plann. Inference 66, 289–304.MATHCrossRefMathSciNetGoogle Scholar
  13. Maglione, D. and Diblasi, A. (2001), ‘Choosing a valid model for the Variogram of an isotropic spatial process’,2001 Annual Conference of Int. Association for Mathematical Geology.Google Scholar
  14. Matheron, G. (1963), ‘Principles of geostatistics’,Economic Geology 58, 1246–1266.Google Scholar
  15. Ribeiro Jr, P. and Diggle, P. (2001), ‘geoR: A package for geostatistical analysis’,R-NEWS vol1, n.2, ISSN 1609–3631.Google Scholar
  16. Shapiro, A. and Botha, J. (1991), ‘Variogram fitting with a general class of conditionally nonnegative definite functions’,Computational Statistics and Data Analysis 11, 87–96.CrossRefGoogle Scholar
  17. Stein, M. (1998),Interpolation of Spatial Data-Some Theory for Kriging, Springer.Google Scholar
  18. Zimmerman, D. and Zimmerman, M. (1991), ‘A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors’,Technometrics 33, n.l, 77–91.CrossRefGoogle Scholar

Copyright information

© Physica-Verlag 2005

Authors and Affiliations

  • Raquel Menezes
    • 1
  • Pilar Garcia-Soidán
    • 2
  • Manuel Febrero-Bande
    • 3
  1. 1.Department of Mathematics for Science and TechnologyUniversity of MinhoGuimarãesPortugal
  2. 2.Department of Statistics and O.R.University of VigoPontevedraSpain
  3. 3.Department of Statistics and O.R.University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations