Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 108, Issue 11, pp 1313–1317 | Cite as

Universal gravitational equations

  • M. Ferraris
  • M. Francaviglia
  • I. Volovich
Article

Summary

We show that for a wide class of Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the first-order formalism,i.e. treating the metric and the connection as independent variables, leads to «universal» equations. If the dimensionn of space-time is greater than two, these universal equations are Einstein equations for a generic Lagrangian. There are exceptional cases where a bifurcation appears. In particular, bifurcations take place for conformally invariant LagrangiansL =R(sun/2)√g. For 2-dimensional space-time we obtain that the universal equation is the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi-Civita connection of the metric and an additional vector field.

PACS

04.20.Fy Canonical formalism Lagrangians variational principles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Weyl:Raum-Zeit-Materie, 4th edition (Springer, Berlin, 1923).CrossRefGoogle Scholar
  2. [2]
    R. Utiyama andB. DeWitt:J. Math. Phys.,3, 608 (1962).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Deser, Hung-Sheng Tsao andP. van Nieuvenhuizen:Phys. Rev. D,10, 3337 (1974).ADSCrossRefGoogle Scholar
  4. [4]
    K. A. Stelle:Phys. Rev. D,16, 953 (1977).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Magnano, M. Ferraris andM. Francavilla:Class. Quantum Grav.,7, 557 (1990).ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Witten:Nucl. Phys. B,311, 46 (1988-89).ADSCrossRefGoogle Scholar
  7. [7]
    G. Stephenson:Nuovo Cimento,9, 263 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. W. Higgs:Nuovo Cimento,11, 816 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C. N. Yang:Phys. Rev. Lett,33, 445 (1974).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Ferraris: inAtti del VI Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Firenze, 1984, edited byM. Modugno (Tecnoprint, Bologna, 1986), pp. 127–136.Google Scholar
  11. [11]
    B. Shahid-Saless:J. Math. Phys.,32, 694 (1991).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    F. W. Hehl, P. Von der Heyde, G. D. Kerlick andJ. Nester:Rev. Mod. Phys.,48, 393 (1976).ADSCrossRefGoogle Scholar
  13. [13]
    E. Sezgin andP. van Nieuvenhuizen:Phys. Rev. D,21, 3269 (1980).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. O. Katanaev andI. V. Volovich:Ann. Phys. (N.Y.),197, 1 (1990).MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Rosenbaum andM. Ryan:Phys. Rev. D,37, 2920 (1988).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    V. H. Hamity andD. E. Barraco:Gen. Rel. Grav.,25, 461 (1993).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  • M. Ferraris
    • 1
  • M. Francaviglia
    • 2
  • I. Volovich
    • 1
  1. 1.Dipartimento di Matematica dell’UniversitàCagliariItalia
  2. 2.Istituto di Fisica Matematica dell’Università J.-L. LagrangeTorinoItalia

Personalised recommendations