Molecular Neurobiology

, Volume 11, Issue 1–3, pp 67–76

Prenatal cocaine exposure revealed minimal postnatal changes in rat striatal dopamine D2 receptor sites and mRNA levels in the offspring

  • Alfreda Stadlin
  • Heung Ling Choi
  • Karl Wah Keung Tsim
  • David Tsang
Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993


It has been reported from this laboratory that prenatal cocaine exposure results in the postnatal transient alterations of rat striatal dopamine uptake sites examined from postnatal 0–32 wk. The present study aims to examine whether this will result in a direct/indirect stimulation of dopamine D2 receptors. Pregnant rats were dosed orally with cocaine hydrochloride (60 mg/kg/d) from gestational day (GD) 7–21. Control animals received an equivalent volume of water. The striatum from the offspring at postnatal 0–32 wk was examined. The radioligand [3H]sulpiride was used for the Scatchard analysis of the D2 receptors, and the changes in the levels of mRNA for the D2 receptor were studied using Northern blot analysis. Results from the present study revealed that in the control group, there was an age-dependent increase in the number of D2 receptor sites (Bmax:44.00±2.12 to 178.00±45.10 fmol/mg protein) and in the levels of D2 mRNA from PN0–32 wk with the most rapid increase occurring during the first 4 wk of postnatal development. Prenatal cocaine exposure resulted in only a significant decrease (p<0.001) in the number of D2 receptor sites at PN0 wk and in a 10% increase in mRNA levels at PN3, 4, and 12 wk. It was concluded from this study that prenatal cocaine exposure resulted in minimal postnatal changes in the dopamine D2 receptor.

Index Entries

Cocaine prenatal dopamine D2 receptor [3H]sulpiride striatum rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams R. M., Burchfield D. J., Gerhardt K. J., and Peters J. M. (1992) Effect of cocaine on electrocortical activity in fetal sheep.Dev. Brain Res. 70, 97–102.CrossRefGoogle Scholar
  2. Bilitzke P. J. and Church M. W. (1992) Prenatal cocaine and alcohol exposures affect rat behavior in a stress test (the porsolt swim test).Neurotoxicol. Teratol. 14, 359–364.PubMedCrossRefGoogle Scholar
  3. Bunzow J. R., Van Tol H. H. M., Grandy D. K., Albert P., Salon J., Christie M., Machida C. A., Neve K. A., and Civelli O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336, 783–787.PubMedCrossRefGoogle Scholar
  4. Burchfield D. J., Graham E. M., Abrams R. M., and Gerhardt K. J. (1990) Cocaine alters behavioral states in fetal sheep.Dev. Brain Res. 56, 41–45.CrossRefGoogle Scholar
  5. Carroll F. I., Lewin A. H., Boja J. W., and Kuhar M. J. (1992) Cocaine receptor: biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter.J. Med. Chem. 35, 969–981.PubMedCrossRefGoogle Scholar
  6. Chasnoff I. J., Burns W. J., Schnoll S. H., and Burns K. A. (1985) Cocaine use in pregnancy.N. Engl. J. Med. 313, 666–669.PubMedCrossRefGoogle Scholar
  7. Chasnoff I. J., Burns K. A., Burns W. J., and Schnoll S. H. (1986) Prenatal drug exposure: effects on neonatal and infant growth and development.Neurotoxicol. Teratol. 9, 291–293.CrossRefGoogle Scholar
  8. Chasnoff I. J., Burns K. A., and Burns W. J. (1987) Cocaine in pregnancy: perinatal morbidity and mortality.Neurobehav. Toxicol. Teratol. 9, 291–293.CrossRefGoogle Scholar
  9. Chasnoff I. J., Griffith D. R., MacGregor S., Dirkes K., and Burns K. A. (1989) Temporal patterns of cocaine use in pregnancy.JAMA 261, 1741–1744.PubMedCrossRefGoogle Scholar
  10. Chasnoff I. J., Landress H. J., and Barrett M. E. (1990) The prevalence of illicit-drug or alcohol use during pregnancy and discrepancies in mandatory reporting in Pinellas County, FL.N. Engl. J. Med. 322, 1202–1206.PubMedCrossRefGoogle Scholar
  11. Church M. W. and Overbeck G. W. (1990) Prenatal cocaine exposure in the Long-Evans rat: III. Developmental effects on the brainstem auditory-evoked potential.Neurotoxicol. Teratol. 12, 345–351.PubMedCrossRefGoogle Scholar
  12. Church M. W., Holmes P. A., Overbeck G. W., Tilak J. P., and Zajac C. S. (1991) Interactive effects of prenatal alcohol and cocaine exposures on postnatal mortality, development and behaviour in the Long-Evans rat.Neurotoxicol. Teratol. 13, 377–386.PubMedCrossRefGoogle Scholar
  13. Coles C. D., Platzman K. A., Smith I., James M. E., and Falek A. (1992) Effects of cocaine and alcohol use in pregnancy on neonatal growth and neurobehavioral status.Neurotoxicol. Teratol. 14, 23–33.PubMedCrossRefGoogle Scholar
  14. Corwin M. J., Lester B. M., Sepkoski C., McLaughlin S., Kayne H., and Golub H. L. (1992) Effects of in utero cocaine exposure on newborn acoustical cry characteristics.Pediatrics 89, 1199–1203.PubMedGoogle Scholar
  15. Davis M. (1985) Cocaine: excitatory effects on sensorimotor reactivity measured with acoustic startle.Psychopharmacology (Berlin) 86, 31–36.CrossRefGoogle Scholar
  16. Dow-Edwards D. L. (1989) Long-term neurochemical and neurobehavioral consequences of cocaine use during pregnancy.Ann NY Acad. Sci. 562, 280–289.PubMedCrossRefGoogle Scholar
  17. Dow-Edwards D. L., Freed L. A., and Fico T. A. (1990) Structural and functional effects of prenatal cocaine exposure in adult rat brain.Dev. Brain Res. 57, 263–268.CrossRefGoogle Scholar
  18. Eisen L. N., Field T. M., Bandstra E. S., Roberts J. P., Morrow C., Larson K., and Steele B. M. (1991) Perinatal cocaine effects on neonatal stress behavior and performance on the Brazelton scale.Pediatrics 88, 477–480.PubMedGoogle Scholar
  19. Foss J. A. and Riley E. P. (1991) Failure of acute cocaine administration to differentially affect acoustic startle and activity in rats prenatally exposed to cocaine.Neurotoxicol. Teratol. 13, 547–551.PubMedCrossRefGoogle Scholar
  20. Frank D. A., Zuckerman B. S., Amaro H., Aboagye K., Bauchner H., Cabral H., Fried L., Hingson R., Kayne H., Levenson S. M., Parker S., Reece H., and Vinci R. (1988) Cocaine use during pregnancy: prevalence and correlates.Pediatrics 82, 888–895.PubMedGoogle Scholar
  21. Freedman S. B., Mustafa A., Poat J., Senior K., Want C., and Woodruff G. N. (1981) A study on the localization of3H-sulpiride binding sites in rat striatal membranes.Neuropharmacology 20, 1151–1155.PubMedCrossRefGoogle Scholar
  22. Freier M. C., Griffith D. R., and Chasnoff I. J. (1991) In utero drug exposure: developmental follow-up and maternal-infant interaction.Sem. Perinatol. 15, 310–316.Google Scholar
  23. Fung Y. K., Reed J. A., and Lau Y. S. (1989) Prenatal cocaine exposure fails to modify neurobehavioral responses and the striatal dopaminergic system in newborn rats.Gen. Pharmacol. 20, 686–693.Google Scholar
  24. Gingras J. L., Weese-Mayer D. E., Hume R. F. Jr., and O’Donnell K. J. (1992) Cocaine and development: mechanisms of fetal toxicity and neonatal consequences of prenatal cocaine exposure.Early Hum. Dev. 31, 1–24.PubMedCrossRefGoogle Scholar
  25. Graham W. C., Clarke C. E., Boyce S., Sambrook M. A., Crossman A. R., and Woodruff G. N. (1990) Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. II. Unilateral intracarotid infusion of MPTP in the monkey (Macaca fascicularis).Brain Res. 514, 103–110.PubMedCrossRefGoogle Scholar
  26. Henderson M. G. and McMillen B. A. (1990) Effects of prenatal exposure to cocaine or related drugs on rat developmental and neurological indices.Brain Res. Bull. 24, 207–212.PubMedCrossRefGoogle Scholar
  27. Henderson M. G., McConnaughey M. M., and McMillen B. A. (1991) Long-term consequences of prenatal exposure to cocaine or related drugs: effects on rat brain monoaminergic receptors.Brain Res. Bull. 26, 941–945.PubMedCrossRefGoogle Scholar
  28. Heyser C. J., Miller J. S., Spear N. E., and Spear L. P. (1992) Prenatal exposure to cocaine disrupts cocaine-dinduced conditioned place preference in rats.Neurotoxicol. Teratol. 14, 57–64.PubMedCrossRefGoogle Scholar
  29. Hutchings D. E., Fico T. A., and Dow-Edwards D. L. (1989) Prenatal cocaine: maternal toxicity, fetal effects and locomotor activity in rat offspring.Neurotoxicol. Teratol. 11, 65–69.PubMedCrossRefGoogle Scholar
  30. Jastrow T. R., Richfield E., and Gnegy M. E. (1984) Quantitative autoradiography of3H-sulpiride binding sits in rat brain.Neurosci. Lett. 51, 47–53.PubMedCrossRefGoogle Scholar
  31. Johns J. M., Means L. W., Means M. J., and McMillen B. A. (1992a) Prenatal exposure to cocaine I: affects on gestation, development, and activity in Sprague-Dawley rats.Neurotoxicol. Teratol. 14, 337–342.PubMedCrossRefGoogle Scholar
  32. Johns J. M., Means M. J., Anderson D. R., Means L. W., and McMillen B. A. (1992b) Prenatal exposure to cocaine II: effects on open-field activity and cognitive behavior in Sprague-Dawley rats.Neurotoxicol. Teratol. 14, 343–349.PubMedCrossRefGoogle Scholar
  33. Joyce J. N., Marshall J. F., Bankiewicz K. S., Kopin I. J., and Jacobwitz D. M. (1986) Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilateral changes in striatal dopamine D2 receptor density.Brain Res. 382, 360–364.PubMedCrossRefGoogle Scholar
  34. Kuhar M. J., Ritz M. C., and Boja J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine.TINS 14, 299–302.PubMedGoogle Scholar
  35. Le Moal M. and Simon H. (1991) Mesocorticolimbic dopaminergic netowrk: functional and regulatory roles.Physiol. Rev. 71, 155–234.PubMedGoogle Scholar
  36. Little B. B., Snell L. M., Palmore M. K., and Gilstrap L. C. III (1988) Cocaine use in pregnant women in a large public hospital.Am. J. Perinatol. 5, 206–207.PubMedCrossRefGoogle Scholar
  37. Lowry O.H., Rosebrough N. J., Farr A. L., and Pandall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  38. McMillen B. A., Johns J. M., Bass E. W., and Means L. W. (1991) Learning and behaviour of adult rats exposed to cocaine through-out gestation.Teratology 43, 495.Google Scholar
  39. Meyer J. S. and Dupont S. A. (1993) Prenatal cocaine administration stimulates fetal brain tyrosine hydroxylase activity.Brain Res. 608, 129–137.PubMedCrossRefGoogle Scholar
  40. Minabe Y., Ashby C. R. Jr., Heyser C., Spear L. P., and Wang R. Y. (1992) The effects of prenatal cocaine exposure on spontaneously active midbrain dopamine neurons in adult male offspring: an electrophysiological study.Brain Res. 586, 152–156.PubMedCrossRefGoogle Scholar
  41. Mofenson H. C. and Caraccio T. R. (1987) Cocaine.Pediatr. Ann. 16, 864–874.PubMedGoogle Scholar
  42. Munson P. J. and Rodbard D. (1980) LIGAND: a versatile computerized approach for the characterization of ligand binding systems.Anal. Biochem. 107, 220–239.PubMedCrossRefGoogle Scholar
  43. Neerhof M. G., MacGregor S. N., and Sullivan T. P. (1989) Cocaine abuse during pregnancy: peripartum prevalence and perinatal outcome.Am. J. Obstet. Gynecol. 161, 633–638.PubMedGoogle Scholar
  44. Neuspiel D. R., Hamel S. C., Hochberg E., Greene J., and Campbell D. (1991) Maternal cocaine use and infant behavior.Neurotoxicol. Teratol. 13, 229–233.PubMedCrossRefGoogle Scholar
  45. Nomura Y., Oki K., and Segawa T. (1982) Ontogenetic development of the striatal [3H]spiperone binding: regulation by sodium and guanine nucleotide in rats.J. Neurochem. 38, 902–908.PubMedCrossRefGoogle Scholar
  46. O’Malley P. M., Bachman J. G., and Johnston L. D. (1988) Period, age, and cohort effects on substance use among young Americans: a decade of change, 1976–1986.Am. J. Public Health 78, 1315–1321.PubMedGoogle Scholar
  47. Oro A. S. and Dixon S. D. (1987) Perinatal cocaine and amphetamine exposure: maternal and neonatal correlates.J. Pediatr. 111, 571–578.PubMedCrossRefGoogle Scholar
  48. Peris J. and Zahniser N. R. (1989) Persistent augmented dopamine release after acute cocaine requires dopamine receptor activation.Pharmacol. Biochem. Behav. 32, 71–76.PubMedCrossRefGoogle Scholar
  49. Peris J., Coleman-Hardee M., and Millard W. J. (1992) Cocaine in utero enhances the behavioral response to cocaine in adult rats.Pharmacol. Biochem. Behav. 42, 509–515.PubMedCrossRefGoogle Scholar
  50. Richardson G. A. and Day N. L. (1991) Maternal and neonatal effects of moderate cocaine use during pregnancy.Neurotoxicol. Teratol. 13, 455–460.PubMedCrossRefGoogle Scholar
  51. Riley E. P. and Foss J. A. (1991) Exploratory behavior and locomotor activity: a failure to find effects in animals prenatally exposed to cocaine.Neurotoxicol. Teratol. 13, 553–558.PubMedCrossRefGoogle Scholar
  52. Ritz M. C., Lamb R. J., Goldberg S. R., and Kuhar M. J. (1987) Cocaine receptors on dopamine transporter are related to the self administration of cocaine.J. Pharmacol. Exp. Ther. 248, 1010–1017.Google Scholar
  53. Sambrook J. M., Fritsch E. F., and Maniatas T. (1989)Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  54. Scalzo F. M., Ali S. F., Frambes N. A., and Spear L. P. (1990) Weanling rats exposed prenatally to cocaine exhibit an increase in striatal D2 dopamine binding associated with an increase in ligand affinity.Pharmacol. Biochem. Behav. 37, 371–373.PubMedCrossRefGoogle Scholar
  55. Schneider J. W., Griffith D. R., and Chasnoff I. J. (1989) Infants exposed to cocaine in utero: implications of developmental assessment and intervention.IYC 2, 25–36.Google Scholar
  56. Smith R. F., Mattran K. M., Kurkjian M. F., and Kurtz S. L. (1989) Alterations in offspring behaviour induced by chronic prenatal cocaine dosing.Neurotoxicol. Teratol. 11, 35–38.PubMedCrossRefGoogle Scholar
  57. Sobrian S. K., Burton L. E., Robinson N. L., Ashe W. K., James H., Stokes D. L., and Turner L. M. (1990) Neurobehavioral and immunological effects of prenatal cocaine exposure in rat.Pharmacol. Biochem. Behav. 37, 617–629.CrossRefGoogle Scholar
  58. Spear L. P., Kirstein C. L., Bell J., Yoottanasumpun V., Greenbaum R., O’Shea J., Hoffman H., and Spear N. E. (1989) Effects of prenatal cocaine exposure on behavior during the early postnatal period.Neurotoxicol. Teratol. 11, 57–63.PubMedCrossRefGoogle Scholar
  59. Stadlin A., Choi H. L., and Tsang D. (1994) Postnatal changes in [3H]mazindol-labelled dopamine uptake sites in the rat striatum following prenatal cocaine exposure.Brain Res. 637, 345–348.PubMedCrossRefGoogle Scholar
  60. Wiggins R. C. (1992) Pharmacokinetics of cocaine in pregnancy and effects on fetal maturation.Clin. Pharmacokinet. 22, 85–93.PubMedGoogle Scholar
  61. Zmitrovich A. C., Hutchings D. E., Dow-Edwards D. L., Malowany D., and Church S. (1992) Effects of prenatal exposure to cocaine on the restactivity cycle of the preweanling rat.Pharmacol. Biochem. Behav. 43, 1059–1064.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Alfreda Stadlin
    • 1
  • Heung Ling Choi
    • 1
  • Karl Wah Keung Tsim
    • 3
  • David Tsang
    • 2
  1. 1.Department of AnatomyThe Chinese University of Hong KongShatin, New TerritoriesHong Kong
  2. 2.Department of BiochemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong
  3. 3.Department of BiologyThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations