Skip to main content
Log in

Genetic mechanisms of early neurogenesis inDrosophila melanogaster

  • Proceedings of the Satellite of the 14th ISN Meeting and the First International Workshop entitled The Neuronal Phenotype Molecular Biology, Cell Specification, and Therapeutic Frontiers held in Lozari, Corsica, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The neurogenic ectoderm ofDrosophila melanogaster consists of the ventral neuroectoderm and the procephalic neuroectoderm. It is hypothesized that epidermal and central neural progenitor cells separate from each other in three steps: conference on the neuroectodermal cells the capability of producing neural or epidermal progenies, separation of the two classes of progenitor cells, and specification of particular types of neuroblasts and epidermoblasts. Separation of neuroblasts and epidermoblasts in controlled by proneural and neurogenic genes.Delta andNotch serve as mediators of direct protein-protein interactions. E(spl)-C inhibits neurogenesis, creating epidermal cells. The achaete-scute complex (AS-C) controls the commitment of nonoverlapping populations of neuroblasts and leads the development of neuroectodermal cells as neuroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso M. C. and Cabrera C. V. (1988) Theachaetescute gene complex ofDrosophila melanogaster comprises four homologous genes.EMBO J. 7, 2585–2591.

    PubMed  CAS  Google Scholar 

  • Brand M. and Campos-Ortega J. A. (1988) Two groups of interrelated genes regulate early neurogenesis inDrosophila melanogaster.Roux's Arch. Dev. Biol. 197, 457–470.

    Article  Google Scholar 

  • Brand M. and Camposrtega J. A. (1990) Second site modifiers of thesplit mutation ofNotch define genes involved in neurogenesis inDrosophila melanogaster.Roux's Arch. Dev. Biol. 198, 275–285.

    Article  Google Scholar 

  • Brand M., Jarmm A. P., Jan L. Y., and Jan Y. N. (1993)asense is aDrosophila neural precursor gene and is capable of initiating sense organ formation.Development 119, 1–17.

    PubMed  CAS  Google Scholar 

  • Cabrera C. V. (1990) Lateral inhibition and cell fate during neurogenesis inDrosophila: the interactions betweenscute, Notch, andDelta.Development 109, 733–742.

    CAS  Google Scholar 

  • Cabrera C. V., Martinez-Arias A., and Bate M. (1987) The expression of three members of theachaetescute gene complex correlates with neuroblast segregation inDrosophila.Cell 50, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega J. A. and Haenlin M. (1992) Regulatory signals and signal molecules in early neurogenesis ofDrosophila melanogaster.Roux's Arch. Dev. Biol. 201, 1–11.

    Article  Google Scholar 

  • Caudy M., Grell E. H., Dambly-Chaudière C., Ghysen A., Jan L. Y., and Jan Y. N. (1988a) The maternal sex determination genedaughterless has zygotic activity necessary for the formation of peripheral neurons inDrosophila.Genes Dev. 2, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Caudy M., Vässin H., Brand M., Tuma R., Jan L. Y., and Jan Y. N. (1988b)daughterless, a gene essential for both neurogenesis and sex determination inDrosophila, has sequence similarities tomyc and theachaete-scute complex.Cell 55, 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Cronmiller C., Schedl P., and Cline T. W. (1989) Molecular characterization ofdaughterless, a Drosophila sex determination gene with multiple roles in development.Genes Dev. 2, 1666–1676.

    Article  Google Scholar 

  • Cubas P., de Celis J.-F., Campuzano S., and Modolell J. (1991) Proneural clusters ofachaete-scute expression and the generation of sensory organs in theDrosophila imaginal wing disc.Genes Dev. 5, 996–1008.

    Article  PubMed  CAS  Google Scholar 

  • Cubas P. and Modolell J. (1992) Theextramacrochetae gene provides information for sensory organ patterning.EMBO J. 11, 3385–3393.

    PubMed  CAS  Google Scholar 

  • Dambly-Chaudière C. and Ghysen A. (1987) Independent subpatterns of sense organs require independent genes of theachaete-scute complex inDrosophila larvae.Genes Dev. 1, 297–306.

    Article  Google Scholar 

  • de Celis J., Marí-Beffa M., and García-Bellido A. (1991) Cell autonomous role ofNotch, an epidermal growth factor homolog, in sensory organ differentiation inDrosophila.Proc. Natl. Acad. Sci. USA 88, 632–636.

    Article  PubMed  Google Scholar 

  • de la Concha A., Dietrich U., Weigel D., and Campos-Ortega J. A. (1988) Functional interactions of neurogenic genes ofDrosophila melanogaster.Genetics 118, 499–508.

    Google Scholar 

  • Delidakis C. and Artavanis-Tsakonas S. (1992) TheEnhancer of split [E(spl)] locus ofDrosophila encodes seven independent helix-loop-helix proteins.Proc. Natl. Acad. Sci. USA 89, 8731–8735.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich U. and Campos-Ortega J. A. (1984) The expression of neurogenic loci in imaginal epidermal cells ofDrosophila melanogaster.J. Neurogen. 1, 315–332.

    CAS  Google Scholar 

  • Doe C. Q. and Goodman C. S. (1985) Early events in insect neurogenesis. II. The role of cell interactions and cell lineages in the determination of neuronal precursor cells.Dev. Biol. 111, 206–219.

    Article  PubMed  CAS  Google Scholar 

  • Doe C. Q., Hiromi Y., Gehring W. J., and Goodman C. S. (1988) Expression and function of the segmentation genefushi-tarazu duringDrosophila neurogenesis.Science 239, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Domínguez M. and Campuzano S. (1993)asense, a member of theDrosophila achaete-scute complex, is a proneural and a neural differentiation gene.EMBO J. 12, 2049–2060.

    PubMed  Google Scholar 

  • Fehon R. G., Johansen K., Rebay I., and Artavanis-Tsakonas S. (1991) Complex cellular and subcellular regulation ofNotch expression during embryonic and imaginal development ofDrosophila: implications forNotch function.J. Cell. Biol. 113, 657–669.

    Article  PubMed  CAS  Google Scholar 

  • Fehon R. G., Kooh P. J., Rebay I., Regan C. L., Xu T., Muskavitch M. A. T., and Artavanis-Tsakonas S. (1990) Molecular interactions between the protein products of the neurogenic lociNotch andDelta, two EGF-homologous genes inDrosophila.Cell 62, 523–533.

    Article  Google Scholar 

  • García-Bellido A. (1975) Genetic control of wing disc development inDrosophila, inCell Patterning, Ciba Foundation Symposium 29 (Brenner S., ed.), Elsevier, Excerpta Medica, North Holland Assoc. Amsterdam, Oxford, New York, pp. 161–178.

    Google Scholar 

  • García-Bellido A. (1979) Genetic analysis of theachaete-scute system ofDrosophila melanogaster.Genetics 91, 491–520.

    PubMed  Google Scholar 

  • García-Bellido A. and Santamaria P. (1978) Developmental analysis of theachaete-scute system ofDrosophila melanogaster.Genetics 88, 469–486.

    PubMed  Google Scholar 

  • Ghysen A. and Dambly-Chaudière C. (1988) From DNA to form: theachaete-scute complex.Genes Dev. 2, 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen A. and Dambly-Chaudière C. (1989) Genesis of theDrosophila peripheral nervous system.Trend Genet. 5, 251–255.

    Article  CAS  Google Scholar 

  • Ghysen A. and Dambly-Chaudière C. (1990) Early events in the development ofDrosophila peripheral nervous system.J. Physiol. (Paris) 84, 11–20.

    CAS  Google Scholar 

  • Ghysen A., Dambly-Chaudière C., Jan L. Y., and Jan Y.-N. (1993) Cell interactions and gene interactions in peripheral neurogenesis.Genes Dev. 7, 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen A. and O'Kane C. (1989) Detection of enhancer-like elements in the genome ofDrosophila.Development 105, 35–52.

    PubMed  CAS  Google Scholar 

  • González F., Romani S., Cubas P., Modolell J., and Campuzano S. (1989) Molecular analysis ofasense, a member of theachaete-scute complex ofDrosophila melanogaster, and its novel role in optic lobe development.EMBO J. 8, 3553–3562.

    PubMed  Google Scholar 

  • Goriely A., Dumont N., Dambly-Chaudière C., and Ghysen A. (1991) The determination of sense organs inDrosophila, effect of the neurogenic mutations in the embryo.Development 113, 1395–1404.

    PubMed  CAS  Google Scholar 

  • Haenlin M., Kramatschek B., and Campos-Ortega J. A. (1990) The pattern of transcription of the neurogenic geneDelta ofDrosophila melanogaster.Development 110, 905–914.

    PubMed  CAS  Google Scholar 

  • Haenlin M., Kunisch M., Kramatschek B., and Campos-Ortega J. A. (1994) Genomic regions regulating expression of theDrosophila neurogenic geneDelta.Mech. Dev. 47, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein V. and Campos-Ortega J. A. (1984) Early neurogenesis in wildtypeDrosophila melanogaster.Roux's Arch. Dev. Biol. 193, 308–325.

    Article  Google Scholar 

  • Hartenstein V. and Campos-Ortega J. A. (1986) The peripheral nervous system of mutants of early neurogenesis inDrosophila melanogaster.Roux's Arch. Dev. Biol. 195, 210–221.

    Article  Google Scholar 

  • Hartley D. A., Xu T., and Artavanis-Tsakonas S. (1987) The embryonic expression of theNotch locus ofDrosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein.EMBO J. 6, 3407–3417.

    PubMed  CAS  Google Scholar 

  • Heitzler P. and Simpson P. (1991) The choice of cell fate in the epidermis ofDrosophila.Cell 64, 1083–1092.

    Article  PubMed  CAS  Google Scholar 

  • Heitzler P. and Simpson P. (1993) Altered epidermal growth factor-like sequences provide evidence for a role ofNotch as a receptor in cell fate decisions.Development 117, 1113–1123.

    PubMed  CAS  Google Scholar 

  • Hinz U., Giebel B., and Campos-Ortega J. A. (1994) The basic-helix-loop-helix domain of theDrosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes.Cell 46, 73–85.

    Google Scholar 

  • Hoppe P. E. and Greenspan R. J. (1986) Local function of theNotch gene for embryonic ectodermal choice inDrosophila.Cell 46, 773–783.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe P. E. and Greenspan R. J. (1990) TheNotch locus ofDrosophila is required in epidermal cells for epidermal development.Development 109, 875–885.

    PubMed  CAS  Google Scholar 

  • Jarman A. P., Grau Y., Jan L. Y., and Jan Y. N. (1993)atonal is a proneural gene that directs chrodotonal organ formation in theDrosophila peripheral nervous system.Cell 73, 1307–1321.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez F. and Campos-Ortega J. A. (1979) A region of theDrosophila genome necessary for CNS development.Nature 282, 310–312.

    Article  PubMed  Google Scholar 

  • Jiménez F. and Campos-Ortega J. A. (1982) Maternal effects of zygotic mutants affecting early neurogenesis inDrosophila.Roux's Arch. Dev. Biol. 191, 191–201.

    Article  Google Scholar 

  • Jiménez F. and Campos-Ortega J. A. (1987) Genes in subdivision 1B of theDrosophila melanogaster X-chromosome and their influence on neural development.J. Neurogen. 4, 179–200.

    Google Scholar 

  • Jiménez F. and Campos-Ortega J. A. (1990) Defective neuroblast commitment in mutants of theachaete-scute complex and adjacent genes ofDrosophila melanogaster.Neuron 5, 81–99.

    Article  PubMed  Google Scholar 

  • Johansen K. M., Fehon R. G., and Artavanis-Tsakonas S. (1989) theNotch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells duringDrosophila development.J. Cell. Biol. 109, 2427–2440.

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G., Lehmann R., Schardin M., and Nüsslein-Volhard C. (1986) Segmental organisation of the head in the embryo ofDrosophila melanogaster. Ablastoderm fate map of the cuticle structures of the larval head.Roux's Arch. Dev. Biol. 195, 359–377.

    Article  Google Scholar 

  • Kelley M. R., Kidd S., Deutsch W. A., and Young M. W. (1987) Mutations altering the structure of epidermal growth factor-like coding sequences at theDrosophila Notch locus.Cell 51, 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Kidd S., Kelley M. R., and Young M. W. (1986) Sequence of theNotch locus ofDrosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors.Mol. Cell. Biol. 6, 3094–3108.

    PubMed  CAS  Google Scholar 

  • Kidd S., Baylies M. K., Gasic G. P., and Young M. W. (1989) Structure and distribution of theNotch protein in developingDrosophila.Genes Dev. 3, 1113–1129.

    Article  PubMed  CAS  Google Scholar 

  • Klämbt C., Knust E., Tietze K., and Campos-Ortega J. A. (1989) Closely related transcripts encoded by the neurogenic gene complexEnhancer of split ofDrosophila melanogaster.EMBO J. 8, 203–210.

    PubMed  Google Scholar 

  • Knust E., Bremer K. A., Vässin H., Ziemer A., Tepass U., and Campos-Ortega J. A. (1987a) TheEnhancer of split locus and neurogenesis inDrosophila melanogaster.Dev. Biol. 122, 262–273.

    Article  PubMed  CAS  Google Scholar 

  • Knust E., Tietze K., and Campos-Ortega J. A. (1987b) Molecular analysis of the neurogenic locusEnhancer of split of Drosophila melanogaster.EMBO J. 6, 4113–4123.

    PubMed  CAS  Google Scholar 

  • Knust E., Schrons H., Grawe F., and Campos-Ortega J. A. (1992) Seven genes of theEnhancer of split complex ofDrosophila melanogaster encode helix-loop-helix proteins.Genetics 132, 505–518.

    PubMed  CAS  Google Scholar 

  • Kooh P. J., Fehon R., and Muskavitch M. A. T. (1993) Implications of dynamic patterns ofDelta andNotch expression for cellular interactions during aDrosophila development.Development 117, 493–507.

    PubMed  CAS  Google Scholar 

  • Kopczynski C. C., Alton A. K., Fechtel K., Kooh P. J., and Muskavitch M. A. T. (1988)Delta, aDrosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates.Genes Dev. 2, 1723–1735.

    Article  PubMed  CAS  Google Scholar 

  • Kopczynski C. C. and Muskavitch M. A. T. (1989) Complex spatio-temporal accumulation of alternative transcripts from the neurogenic geneDelta duringDrosophila embryogenesis.Development 107, 623–636.

    PubMed  CAS  Google Scholar 

  • Kramatschek B. and Campos-Ortega J. A. (1994) Neuroectodermal transcription ofDrosophila neurogenic genesE(spl) andHLH-m5 is regulated by proneural proteins.Development 120, 815–826.

    PubMed  CAS  Google Scholar 

  • Kunisch M., Haenlin M., and Campos-Ortega J. A. (1994) Lateral inhibition mediated by theDrosophila neurogenic geneDelta is activated by proteins encoded by proneural genes.Proc. Natl. Acad. Sci. 91, 10,139–10,143.

    Article  CAS  Google Scholar 

  • Lehmann R., Dietrich U., Jiménez F., and Campos-Ortega J. A. (1981) Mutations of early neurogenesis inDrosophila.Roux's Arch. Dev. Biol. 190, 226–229.

    Article  Google Scholar 

  • Lehmann R., Jiménez F., Dietrich U., and Campos-Ortega J. A. (1983) On the phenotype and development of mutants of early neurogenesis inDrosophila melanogaster.Roux's Arch. Dev. Biol. 192, 62–74.

    Article  Google Scholar 

  • Lieber T., Alcamo E., Hassel B., Krane J. F., Campos-Ortega J. A., and Young M. W. (1992) Single amino acid substitutions in EGF-like elements of theNotch andDelta proteins modifyDrosophila development and depress cell adhesion in vitro.Neuron 9, 847–859.

    Article  PubMed  CAS  Google Scholar 

  • Lieber T., Kidd S., Alcamo E., Corbin V., and Young M. W. (1993) Antineurogenic phenotypes induced by truncatedNotch proteins indicate a role in signal transduction and may point to a novel function forNotch in nuclei.Genes Dev. 7, 1949–1965.

    Article  PubMed  CAS  Google Scholar 

  • Lüer K. and Technau G. M. (1992) Primary culture of single ectodermal precursors ofDrosophila reveals a dorsoventral prepattern of intrinsic neurogenic and epidermogenic capabilities at the early gastrula stage.Development 116, 377–385.

    PubMed  Google Scholar 

  • Martin-Bermudo M. D., Martínez C., and Jiménez F. (1991) Distribution and function of thelethal of scute gene product during early neurogenesis inDrosophila.Development 113, 445–454.

    PubMed  CAS  Google Scholar 

  • Muller H. J. (1935) The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere.Genetica 17, 237–252.

    Article  Google Scholar 

  • Murre C., Schonleber McCaw P., and Baltimore D. (1989a) The amphipathic helix-loop-helix: a new DNA-binding and dimerization motif in immunoglobulin enhancer bindingdaughterless, MyoD and myc proteins.Cell 56, 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Murre C., Schonleber McCaw P., Vässin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B., Weintraub H., and Baltimore D. (1989b) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence.Cell 58, 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Oellers N., Dehio M., and Knust E. (1994) Basic-helix-loop-helix proteins of theEnhancer of split complex ofDrosophila negatively interfere with transcriptional activation by proneural proteins. Submitted.

  • Poulson D. F. (1937) Chromosomal deficiencies and embryonic development ofDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 23, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Rebay I., Fleming R. J., Fehon R. G., Cherbas L., Cherbas P., and Artavanis-Tsakonas S. (1991) Specific repeats ofNotch mediate interactions withDelta andSerrate: implications forNotch as a multifunctional receptor.Cell 67, 687–699.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez I., Hernández R., Modolell J., and Ruiz-Gómez M. (1990) Competence to develop sensory organs is temporally and spatially regulated inDrosophila epidermal primordia.EMBO J. 9, 3583–3592.

    PubMed  Google Scholar 

  • Romani S., Campuzano S., and Modolell J. (1987) Theachaete-scute complex is expressed in neurogenic regions ofDrosophila embryos.EMBO J. 6, 2085–2092.

    PubMed  CAS  Google Scholar 

  • Romani S., Campuzano S., Macagno E. R., and Modolell J. (1989) Expression ofachaete andscute genes inDrosophila imaginal discs and their function in sensory organ development.Genes Dev. 3, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gómez M. and Ghysen A. (1993) The expression and role of a proneural gene,achaete, in the development of the larval nervous system ofDrosophila.EMBO J. 12, 1121–1130.

    PubMed  Google Scholar 

  • Schrons H., Knust E., and Campos-Ortega J. A. (1992) TheEnhancer of split complex and adjacent genes in the 96F region ofDrosophila melanogaster are required for segregation of neural and epidermal progenitor cells.Genetics 132, 481–503.

    PubMed  CAS  Google Scholar 

  • Shepard S. B., Broverman S. A., and Muskavitch M. A. T. (1989) A tripartite interaction among alleles ofNotch, Delta, andEnhancer of split during imaginal development ofDrosophila melanogaster.Genetics 122, 429–438.

    PubMed  CAS  Google Scholar 

  • Skeath J. B. and Carroll S. B. (1991) Regulation ofachaete-scute gene expression and sensory organ pattern formation in theDrosophila wing.Genes Dev. 5, 984–995.

    Article  PubMed  CAS  Google Scholar 

  • Skeath J. B. and Carroll S. B. (1992) Regulation of proneural gene expression and cell fate during neuroblast segregation in theDrosophila embryo.Development 114, 939–946.

    PubMed  CAS  Google Scholar 

  • Skeath J. B., Panganiban G., Selegue J., and Carroll S. B. (1992) Gene regulation in two dimensions: the proneuralachaete andscute genes are controlled by combinations of axis-patterning genes through a common intergenic control region.Genes Dev. 6, 2606–2619.

    Article  PubMed  CAS  Google Scholar 

  • Struhl G., Fitzgerald K., and Greenwald I. (1993) Intrinsic activity of theLin-12 andNotch intracellular domains in vivo.Cell 74, 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Stüttem I. and Campos-Ortega J. A. (1991) Cell commitment and cell interactions in the ectoderm ofDrosophila melanogaster.Development Suppl. 2, 39–46.

    PubMed  Google Scholar 

  • Taghert P. H., Doe C. Q., and Goodman C. S. (1984) Cell determination and regulation during development of neuroblasts and neurons in grasshopper embryos.Nature 307, 163–165.

    Article  PubMed  CAS  Google Scholar 

  • Technau G. M. and Campos-Ortega J. A. (1985) Fate mapping in wildtypeDrosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage.Roux's Arch. Dev. Biol. 194, 196–212.

    Article  Google Scholar 

  • Technau G. M. and Campos-Ortega J. A. (1986) Lineage analysis of transplanted individual cells in embryos ofDrosophila melanogaster. II. Commitment and proliferative capabilities of neural and epidermal cell progenitors.Roux's Arch. Dev. Biol. 195, 445–454.

    Article  Google Scholar 

  • Technau G. M. and Campos-Ortega J. A. (1987) Cell autonomy of expression of neurogenic gene ofDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 84, 4500–4504.

    Article  PubMed  CAS  Google Scholar 

  • Tietze K., Oellers N., and Knust E. (1992)Enhancer of split D, a dominant mutation ofDrosophila and its use in the study of functional domains of a helix-loop-helix protein.Proc. Natl. Acad. Sci. USA. 89, 6152–6156.

    Article  PubMed  CAS  Google Scholar 

  • Van Doren M., Powell P. A., Pasternak D., Singson A., and Posakony J. W. (1992) Spatial regulation of proneural gene activity: auto and cross-activation ofachaete is antagonized byextramacrochatae.Genes Dev. 6, 2592–2605.

    Article  PubMed  Google Scholar 

  • Vässin H., Brand M., Jan L. Y., and Jan Y.-N. (1994)daughterless is essential for neuronal precursor differentiation but not for initiation of neuronal precursor formation inDrosophila embryos.Development 120, 935–945.

    Google Scholar 

  • Vässin H., Bremer K. A., Knust E., and Campos-Ortega J. A. (1987) The neurogenic locusDelta ofDrosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats.EMBO J. 6, 3431–3440.

    PubMed  Google Scholar 

  • Vässin H., Vielmetter J., and Campos-Ortega J. A. (1985) Genetic interactions in early neurogenesis ofDrosophila melanogaster.J. Neurogen. 2, 291–308.

    Google Scholar 

  • Villares R. and Cabrera C. V. (1987) Theachaete-scute gene complex ofDrosophila melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology tomyc.Cell 50, 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Wharton K. A., Johansen K. M., Xu, T., and Artavanis-Tsakonas S. (1985) Nucleotide sequence from the neurogenic locusNotch implies a gene product that shares homology with proteins containing EGF-like repeats.Cell 43, 567–581.

    Article  PubMed  CAS  Google Scholar 

  • White K. (1980) Defective neural development inDrosophila melanogaster embryos deficient for the tip of the X-chromosome.Dev. Biol. 80, 322–344.

    Article  Google Scholar 

  • White K., DeCelles N. L., and Enlow T. C. (1983) Genetic and developmental analysis of the locusvnd inDrosophila melanogaster.Genetics 104, 433–488.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos-Ortega, J.A. Genetic mechanisms of early neurogenesis inDrosophila melanogaster . Mol Neurobiol 10, 75–89 (1995). https://doi.org/10.1007/BF02740668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740668

Index Entries

Navigation