Molecular Neurobiology

, Volume 16, Issue 2, pp 149–162 | Cite as

Making sense of the multiple MAP-2 transcripts and their role in the neuron

  • Bridget Shafit-Zagardo
  • Nellie Kalcheva


Microtubule-associated protein-2 (MAP-2) is a family of heat-stable, phosphoproteins expressed predominantly in the cell body and dendrites of neurons. Three major MAP-2 isoforms, (MAP-2a, MAP-2b, MAP-2c) are differentially expressed during the development of the nervous system and have an important role in microtubule dynamics. Several MAP-2 cDNA clones that correspond to the major MAP-2 transcripts and additional, novel MAP-2 transcripts expressed in the CNS and PNS have been characterized. The transcripts result from the alternative splicing of a single MAP-2 gene consisting of 20 exons. Studies are now being directed toward understanding the role of the multiple MAP-2 forms that contain novel exons in the nervous system. The expression, localization, and possible functions of the newly identified spliced forms are the focus of this review.

Index Entries

Microtubule-associated protein-2 MAP-2 MAP-2 gene structure MAP-2 transcripts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsztein and Purich D. (1984) Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region.J. Biol. Chem. 269, 28,465–28,471.Google Scholar
  2. Albala J. S., Kalheva N., and Shafit-Zagardo B. (1993) Characterization of the transcripts encoding MAP-2b and MAP-2c.Gene 136, 377–378.PubMedGoogle Scholar
  3. Albala J. S., Kress Y., Liu W.-K., Weidenheim K., Yen S.-H. C., and Shafit-Zagardo B. (1995) Human microtubule-associated protein-2c (MAP-2c) localizes to dendrites and axons in fetal spinal motor neurons.J. Neurochem. 64, 2480–2490.PubMedGoogle Scholar
  4. Baas P. W. and Black M. M. (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability.J. Cell Biol. 111, 495–509.PubMedGoogle Scholar
  5. Bass P. W., Deitch I. S., Black M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA 85, 8335–8339.Google Scholar
  6. Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.J. Comp. Neurol. 226, 203–221.PubMedGoogle Scholar
  7. Binder L. I., Frankfurter A., Kim H., Caceres A., Payne M. R., and Rebhun L. L. (1984) Heterogeneity of microtubule associated protein 2 during rat brain development.Proc. Natl. Acad. Sci. USA 81, 5613–5617.PubMedGoogle Scholar
  8. Bruckenstein D. A., Lein P. J., Higgins D., and Fremeau R. T. Jr. (1990) Distinct spatial localization of specific mRNAs in cultured sympathetic neurons.Neuron 5, 809–819.PubMedGoogle Scholar
  9. Brugg B. and Matus A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells.J. Cell Biol. 114, 735–743.PubMedGoogle Scholar
  10. Bulinski J. C. and Gundersen G. G. (1991) Stabilization of post-translational modification of microtubules during cellular morphogenesis.Bioassays 13, 285–293.Google Scholar
  11. Burgoyne R. D. and Cumming R. (1984) Ontogeny of microtubule-associated protein 2 in rat cerebellum: differential expression of the doublet polypeptides.Neuroscience 11, 156–167.PubMedGoogle Scholar
  12. Burns R. G., Islam K., and Chapman R. (1984) The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2: tubulin interaction.Eur. J. Biochem. 141, 609–615.PubMedGoogle Scholar
  13. Burton P. R. (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity.Brain Res 473, 107–115.PubMedGoogle Scholar
  14. Caceres A., Banker G., Steward O., Binder L., and Payne M. (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture.Dev. Brain Res. 13, 314–318.Google Scholar
  15. Caceres A., Mautino J., and Kosik K. S. (1992) Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation.Neuron 9, 607–618.PubMedGoogle Scholar
  16. Cambry-Deakin M. A. and Burgoyne R. D. (1987) Posttranslational modifications of alpha-tubulin: Acetylated and detyrosinated forms in axons of rat cerebellum.J. Cell. Biol. 104, 1569–1574.Google Scholar
  17. Chamak B., Fellous A., Glowinski J., and Prochiantz A. (1987) MAP-2 expression and neuritic out-growth and branching are coregulated through region-specific neuro-astroglial interactions.J. Neurosci. 7, 3163–3170.PubMedGoogle Scholar
  18. Chen J., Kanai Y., Cowan N., and Hirokawa N. (1992) Projection domains of MAP-2 and tau determine the spacing between microtubules in dendrites and axons.Nature 360, 674–677.PubMedGoogle Scholar
  19. Chung W. J., Kindler S., Seidenbecher C., and Garner C. C. (1996) MAP-2a, an alternatively spliced variant of MAP-2.J. Neurochem. 66, 1273–1281.PubMedGoogle Scholar
  20. Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977) Purification of tau, a microtubule associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol. 116, 207–225.PubMedGoogle Scholar
  21. Couchie D., Chabas S., Mavilia C., and Nunez J. (1996) New Forms of HMW MAP-2 are preferentially expressed in the spinal cord.FEBS Lett. 388, 76–79.PubMedGoogle Scholar
  22. Crino P. B. and Eberwine J. (1996) Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis.Neuron 17, 1171–1187.Google Scholar
  23. Cummings R., Burgoyne R. D., and Lytton N. A. (1984) Immunofluorescence distribution of alpha tubulin, beta tubulin and microtubule-associated protein 2 during in vitro maturation of cerebellar granule cell neurones.Neuroscience 12, 775–782.Google Scholar
  24. Cunningham C. C., Leclerc N., Flanagan L. A., Lu M., Janmey P. A., and Kosik K. S. (1997) Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line.J. Cell Biol. 136, 845–857.PubMedGoogle Scholar
  25. Dammerman M., Yen S.-H., and Shafit-Zagardo B. (1989) Sequence of a human MAP-2 region sharing epitopes with Alzheimer neurofibrillary tangles.J. Neurosci. Res. 24, 487–495.PubMedGoogle Scholar
  26. De Camilli P., Miller P. E., Navone F., Theurkauf W. E., and Vallee R. B. (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience 11, 817–846.PubMedGoogle Scholar
  27. Dinsmore J. H. and Solomon F. (1991) Inhibition of MAP-2 expression affects both morphological and cell division phenotypes of neuronal differentiation.Cell 64, 817–826.PubMedGoogle Scholar
  28. Doll T., Meichsner M., Riederer B. M., Honegger P., and Matus A. (1993) An isoform of microtubule associated protein-2 (MAP-2) containing four repeats of the tubulin binding motif.J. Cell Sci. 106, 633–639.PubMedGoogle Scholar
  29. Doll T., Papandrikopoulou A., and Matus A. (1990) Nucleotide and amino acid sequences of embryonic rat MAP2c.Nucl. Acid Res. 18, 361.Google Scholar
  30. Fellous A., Francon J., Lennon A. M., and Nunez J. (1977) Microtubule assembly in vitro.Eur J Biochem. 78, 167–174.PubMedGoogle Scholar
  31. Ferhat L., Bernard A., Ribas de Pouplana L., Ben-Ari Y., and Khrestchatisky M. (1994) Structure, regional and developmental expression of rat MAP2d, a splice variant encoding four microtubule-binding domains.Neurochem. Intl. 25, 327–338.Google Scholar
  32. Ferhat L., Represa A., Bernard A., Ben-Ari Y., and Khrestchatisky M. (1996) MAP2d promotes bundling and stabilization of both microtubules and microfilaments.J. Cell Sci. 109, 1095–1103.PubMedGoogle Scholar
  33. Ferreira A. J., Busciglio J., and Caceres A. (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW MAP-2 and tau.Dev. Brain Res. 49, 215–228.Google Scholar
  34. Ferreira A. J., Busciglio J., Landa C., and Caceres A. (1990) Ganglioside-enhanced neurite growth: evidence for a selective induction of HMW MAP-2.J. Neurosci. 10, 293–302.PubMedGoogle Scholar
  35. Fischer I., Richter-Landsbert C., and Safaei R. (1991) Regulation of microtubule-associated protein-2 (MAP-2) expression by nerve growth factor in PC12 cells.Exp. Cell Res. 194, 195–201.PubMedGoogle Scholar
  36. Forleo P., Couchie D., Chabas S., and Nunez J. (1996) Four repeat HMW MAP2 forms in rat dorsal root ganglia.J. Molec. Neurosci. 7, 193–201.PubMedGoogle Scholar
  37. Friedrich P. and Aszedi A. (1991) MAP2: a sensitive crosslinker and adjustable spacer in dendritic architecture.FEBS Lett. 295, 5–9.PubMedGoogle Scholar
  38. Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–783.PubMedGoogle Scholar
  39. Garner C. C., Brugg B., and Matus A. (1988) A70 kilodalton microtubule-associated protein (MAP2c), related to MAp2.J. Neurochem 50, 609–615.PubMedGoogle Scholar
  40. Garner C. C., Tucker R. P., and Matus A. (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature 336, 674–677.PubMedGoogle Scholar
  41. Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., and Shelanski M. L. (1974) A dynein-like protein associated with microtubules.FEBS Lett. 40, 281–286.PubMedGoogle Scholar
  42. Greer K., Rosenbaum J. L. (1989) Posttranslational modifications of tubulin, inCell Movement, vol. 2. (Warner F. D. and McIntosh R., eds.). Liss, New York pp. 47–66.Google Scholar
  43. Guilleminot J., Langkopf A., and Nunez J. (1995) Identification of a new exon of the brain MAP-2.Compt. Rend. Ac. Sci. 318, 304–309.Google Scholar
  44. Gundersen G. G., Khawaja S., and Bulinski J. C. (1987) Postpolymerization dephosphorylation of alpha-tubulin: a mechanism for subcellular differentiation of microtubules.J. Cell Biol. 105, 251–264.PubMedGoogle Scholar
  45. Gurland G. and Gundersen G. G. (1993) Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells.Proc. Natl. Acad. Sci. USA 90, 8827–8831.PubMedGoogle Scholar
  46. Hernandez M. A., Wandosell F., and Avila J. (1987) Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2.J. Neurochem. 48, 8–93.Google Scholar
  47. Hirokawa N., Funakoshi T., Sato-Harada R., and Kanai Y. (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.J. Cell. Biol. 132, 667–679.PubMedGoogle Scholar
  48. Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., and Nishida E. (1992) Mitogen-activated protein kinase catalyzed phosphorylation of microtubule associated proteins, microtubule associated protein 2 and microtubule associated protein 4, induces an alteration in their function.Eur. J. Biochem. 203, 43–52.PubMedGoogle Scholar
  49. Johnson G. V. W. and Jope R. S. (1992) Mini-review: the role of microtubule-associated protein (MAP-2) in neuronal growth, plasticity, and degeneration.J. Neurosci. Res. 33, 505–512.PubMedGoogle Scholar
  50. Kaech S., Ludin B., and Matus A. (1996) Cytoskeletal plasticity in cells expressing neuronal microtubules-associated proteins.Neuron 17, 1189–1199.PubMedGoogle Scholar
  51. Kalcheva N., Rockwood J. M., Kress Y., Steiner A., and Shafit-Zagardo B. (1998) Molecular and functional characteristics of MAP-2a: Ability of MAP-2a versus MAP-2b to induce stable microtubules in COS cell.Cell Motil. Cytoskel., in press.Google Scholar
  52. Kalcheva N. and Shafit-Zagardo B. (1995) Three unique 5′ untranslated regions are spliced to common coding exons of high- and low-molecular weight microtubule-associated protein-2.J. Neurochem. 65, 1472–1480.PubMedGoogle Scholar
  53. Kalcheva N., Albala J., O'Guin K., Rubino H., Garner C., and Shafit-Zagardo B. (1995) Genomic structure of human MAP2 and characterization of additional MAP-2 isoforms.Proc. Natl. Acad. Sci. USA 92, 10,894–10,898.Google Scholar
  54. Kalcheva N., Weidenheim K. M., Kress Y., and Shafit-Zagardo B. (1997) Expression of MAP-2a and other novel MAP-2 transcripts in human fetal spinal cord.J. Neurochem. 68, 383–391.PubMedGoogle Scholar
  55. Kanai Y. and Hirokawa N. (1995) Sorting mechanisms of tau and MAP-2 in neurons: suppressed axonal transit of MAP-2 and locally regulated microtubule binding.Neuron 14, 421–432.PubMedGoogle Scholar
  56. Keates R. A. B. and Hall R. H. (1975) Tubulin requires an accessory protein for self-assembly into microtubules.Nature 257, 418–421.PubMedGoogle Scholar
  57. Kim H., Binder L. I., and Rosenbaum J. L. (1979) The periodic association of MAP-2 with brain microtubules in vitro.J. Cell Biol. 80, 266–276.PubMedGoogle Scholar
  58. Kindler S. and Garner C. C. (1994) Four repeat MAP-2 isoforms in human and rat brain.Mol. Brain Res. 26, 218–224.PubMedGoogle Scholar
  59. Kindler S., Muller R., Chung W. J., and Garner C. C. (1996) Molecular characterization of dendritically localized transcripts encoding MAP-2.Mol. Brain Res. 36, 63–69.PubMedGoogle Scholar
  60. Kindler S., Schulz B., Goedert M., and Garner C. C. (1990) Molecular structure of microtubule-associated protein 2b and 2c from rat brain.J. Biol. Chem. 265, 19,679–19,684.Google Scholar
  61. Kleiman R., Banker G., and Steward O. (1990) Differential subcellular localization of particular mRNAs in hippocampal neurons in culture.Neuron 5, 821–830.PubMedGoogle Scholar
  62. Kleiman R., Banker G., and Steward O. (1993) Inhibition of protein synthesis alters the subcellular distribution of mRNA in neurons but does not prevent dendritic transport of RNA.Proc. Natl. Acad. Sci. USA 90, 11,192–11,196.Google Scholar
  63. Knowles R. B., Sabry J. H., Martone M. E., Deerinck T. J., Ellisman M. H., Bassell G. J., and Kosik K. S. (1996) Translocation of RNA granules in living neurons.J. Neurosci. 16, 7812–7820.PubMedGoogle Scholar
  64. Kosik K. S., Orecchio L. D., Bakalis S., Duffy L., and Neve R. (1988) Partial sequence of MAP-2 in the region of a shared epitope with Alzheimer neurofibrillary tangles.J. Neurochem. 51, 587–598.PubMedGoogle Scholar
  65. Langkopf A., Guilleminot J., and Nunez J. (1994) Two novel HMW MAP2 variants with four microtubule-binding repeats and different projection domains.FEBS Lett. 354, 259–262.PubMedGoogle Scholar
  66. Lewis S. A., Wang D., and Cowan N. J. (1988) Microtubule associated protein MAP-2 shares a microtubule-binding motif with tau protein.Science 242, 936–939.PubMedGoogle Scholar
  67. Loveland K. L., Hayes T. M., Meinhardt A., Zlatic K. S., Parvinen M., de Kretser D. M., and McFarlane J. R. (1996) Microtubule-associated protein-2 in the testis: a novel site of expression.Biol. Reproduction 54, 896–904.Google Scholar
  68. Mandelkow E. M., Lange G., Jagla A., Spann U., and Mandelkow E. (1988) Dynamics of the microtubule oscillator: Role of nucleotides and tubulin-MAP interactions.EMBO J. 7, 357–365.PubMedGoogle Scholar
  69. Marsden K. M., Doll T., Ferralli J., Botteeri F., and Matus A. (1996) Transgenic expression of embryonic MAP2 in adult mouse brain: implications for neuronal polarization.J. Neurosci. 16, 3265–3273.PubMedGoogle Scholar
  70. Matus A. (1988) MAPs: their potential role in determining neuronal morphology.Ann. Rev. Neurosci. 11, 29–44.PubMedGoogle Scholar
  71. Matus A. (1994) MAP2, inMicrotubules (Hyman J. S. and Lloyd C. W., eds). Wiley, New York, pp. 155–166.Google Scholar
  72. Matus A., Bernhardt R., and Hugh Jones T. (1981) High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain.Proc. Natl. Acad. Sci. USA 78, 3010–3014.PubMedGoogle Scholar
  73. Morest D. K. (1962). The growth of dendrites in the mammalian brain.Z. Anat. Entwickl-Gesch. 128, 290–317.Google Scholar
  74. Murphy D. B. and Borisy G. G. (1975) Association of HMW proteins with microtubules and their role in microtubule assembly in vitro.Proc. Natl. Acad. Sci. USA 72, 2696–2700.PubMedGoogle Scholar
  75. Neve R. L., Harris P., Kosik K. S., Kurnit D. M., and Donlon T. (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and the microtubule-associated protein 2.Mol. Brain Res. 1, 271–280.Google Scholar
  76. Obar R. A., Dingus J., Bayley H., Vallee R. B. (1989) The RII subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain on microtubule-associated proteins 2A, 2B, and 2C.Neuron 3, 639–645.PubMedGoogle Scholar
  77. Okabe S. and Hirokawa N. (1989) Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons.Proc. Natl. Acad. Sci. USA 86, 4127–4131.PubMedGoogle Scholar
  78. Olesen O. F. (1994) Expression of low molecular weight isoforms of microtubule-associated protein 2. Phosphorylation and induction of microtubule assembly in vitro.J. Biol. Chem. 269, 32,904–32,908.Google Scholar
  79. Olmsted J. B. (1986) Microtubule-associated proteins.Ann. Rev. Cell Biol. 2, 421–457.PubMedGoogle Scholar
  80. Papandrikopoulou A., Doll T., Tucker R. P., Garner C. C., and Matus A. (1989) Embryonic AMP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.Nature 340, 650–652.PubMedGoogle Scholar
  81. Papasozomenos S. C. and Binder L. I. (1986) Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract.J. Neurosci. 6, 1748–1756.PubMedGoogle Scholar
  82. Piperno G., LeDizet M., and Chang X. (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture.J. Cell Biol. 104, 289–302.PubMedGoogle Scholar
  83. Quinlin E. M. and Halpain S. (1996a) Postsynaptic mechanisms for bidirectional control of MAP-2 phosphorylation by glutamate receptors.Neuron 16, 357–368.Google Scholar
  84. Quinlin E. M. and Halpain S. (1996b) Emergence of activity-dependent, bi-directional control of microtubule-associated protein MAP-2 phosphorylation during postnatal development.J. Neurosci. 16, 7627–7637.Google Scholar
  85. Riederer B., and Matus A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA 82, 6006–6009.PubMedGoogle Scholar
  86. Rubino H. M., Dammerman M., Shafit-Zagardo B., and Erlichman J. (1989) Localization and characterization of the binding site for the regulatory subunit of type II cAMP dependent protein kinase of MAP2.Neuron 3, 631–638.PubMedGoogle Scholar
  87. Schulze E. and Kirschner M. (1987) Dynamic and stable populations of microtubules in cells.J. Cell Biol. 104, 277–288.PubMedGoogle Scholar
  88. Shafit-Zagardo B., Kalcheva N., Dickson D., Davies P., and Kress Y. (1997) Distribution and subcellular localization of HMW MAP-2 expressing exon 8 in brain and spinal cord.J. Neurochem. 68, 862–873.PubMedGoogle Scholar
  89. Sharma N., Kress Y., and Shafit-Zagardo B. (1994) Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons.Cell Motil. Cytoskel. 27, 234–247.Google Scholar
  90. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., and Greengard P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177–181.PubMedGoogle Scholar
  91. Stumpo D. J., Graff J. M., Albert K. A., Greengard P., and Blackshear P. J. (1989) Molecular cloning, characterization, and expression of a cDNA encoding the “80- to 87-kDa” myristolated alanine-rich C kinase substrate: A major cellular substrate for protein kinase C.Proc. Natl. Acad. Sci. USA 86, 4012–4016.PubMedGoogle Scholar
  92. Takemura R., Okabe S., Umeyama T., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP-1B, MAP-2 or tau.J. Cell Sci. 103, 953–964.PubMedGoogle Scholar
  93. Theurkauf W. E. and Vallee R. B. (1983) Extensive cAMP dependent and cAMP-independent phosphorylation of microtubule-associated protein 2.J. Biol. Chem. 258, 7883–7886.PubMedGoogle Scholar
  94. Tsuyama S., Bramblett G. T., Huang K.-P., and Flavin M. (1986) Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.J. Biol. Chem. 261, 4110–4116.PubMedGoogle Scholar
  95. Tsuyama S., Terayama Y., and Matsayama S. (1987) Numerous phosphates of microtubule-associated protein 2 in living rat brain.J. Biol. Chem. 262, 10,886–10,892.Google Scholar
  96. Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Res. Rev. 15, 101–120.PubMedGoogle Scholar
  97. Tucker R. P. and Matus A. I. (1988) Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina.Dev. Biol. 130, 423–434.PubMedGoogle Scholar
  98. Tucker R. P., Binder L. I., Viereck C., Hemmings B. A., and Matus A. (1988) The sequential appearance of low- and high molecular weight forms of MAP2 in the developing cerebellum.J. Neurosci. 12, 4503–4512.Google Scholar
  99. Tucker R. P., Garner C. C., and Matus A. (1989) In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain.Neuron 2, 1245–1256.PubMedGoogle Scholar
  100. Vallee R. B. (1980) Structure and phosphorylation of microtubule associated protein 2 (MAP2).Proc. Natl. Acad. Sci. USA 77, 3206–3210.PubMedGoogle Scholar
  101. Vallee R. B. and Bloom G. S. (1984) High molecular weight microtubule-associated proteins (MAPs).Modern Cell Biol. 3, 21–75.Google Scholar
  102. Vallee R. B., Di Barmlomeis M. J., and Theurkauf W. E. (1981) A protein kinase bound to the projection portion of MAP2 (microtubule-associated protein 2).J. Cell Biol. 90, 568–576.PubMedGoogle Scholar
  103. Viereck C., Tucker R. P., and Matus A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.J. Neurosci. 9, 3547–3557.PubMedGoogle Scholar
  104. Voter W. A. and Erickson H. P. (1982) Electron microscopy of MAP 2 (microtubule-associated protein 2).J. Ultrastruct. Res. 80, 374–382.PubMedGoogle Scholar
  105. Wordeman L. and Mitchison T. J. (1994) Dynamics of microtubule essembly in vivo, inMicrotubules (Hyams J. S. and Lloyd C. W. (eds.) Wiley-Liss, New York, pp. 287–301.Google Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Bridget Shafit-Zagardo
    • 1
  • Nellie Kalcheva
    • 1
  1. 1.Department of PathologyAlbert Einstein College of MedicineBronx

Personalised recommendations