Advertisement

Molecular Neurobiology

, Volume 13, Issue 2, pp 155–183 | Cite as

The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system

  • Franco Folli
  • Silvana Ghidella
  • Luca Bonfanti
  • C. Ronald Kahn
  • Adalberto Merighi
Article

Abstract

Several studies support the idea that the polypeptides belonging to the family of insulin and insulin-like growth factors (IGFs) play an important role in brain development and continue to be produced in discrete areas of the adult brain. In numerous neuronal populations within the olfactory bulb, the cerebral and cerebellar cortex, the hippocampus, some diencephalic and brainstem nuclei, the spinal cord and the retina, specific insulin and IGF receptors, as well as crucial components of the intracellular receptor signaling pathway have been demonstrated. Thus, mature neurons are endowed with the cellular machinery to respond to insulin and IGF stimulation. Studies in vitro and in vivo, using normal and transgenic animals, have led to the hypothesis that, in the adult brain, IGF-I not only acts as a trophic factor, but also as a neuromodulator of some higher brain functions, such as long-term potentiation and depression. Furthermore, a trophic effect on certain neuronal populations becomes clearly evident in the ischemic brain or neurodegenerative disorders. Thus, the analysis of the early intracellular signaling pathway for the insulin/IGF receptor family in the brain is providing us with new intriguing findings on the way the mammalian brain is sculpted and operates.

Index Entries

Insulin IGF-I IGF-II IGF receptor IRS-1 IRS-2 PI-3 kinase neurons glial cells central nervous system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamo M. L., Shemer J., Roberts C. T. Jr., and LeRoith D. (1993) Insulin and insulin-like growth factor-I induced phosphorylation in neurally derived cells.Ann. NY Acad. Sci. 692, 113–125.PubMedGoogle Scholar
  2. Al-Khodairy F. and Carr A. M. (1992) DNA repair mutants defining G2 checkpoint pathways inSchizosaccharomyces pombe.EMBO J. 11, 1343–1350.PubMedGoogle Scholar
  3. Alpert S., Hanahan D., and Teitelman G. (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons.Cell 53, 295–308.PubMedGoogle Scholar
  4. Altman J. (1992) Programmed cell death: the paths to suicide.Trends Neurol. Sci. 15, 278–280.Google Scholar
  5. Andersson I. K., Edwall D., Norstedt G., Rozell B., Skottner A., and Hansson H.-A. (1988) Differing expression of insulin-like growth factor I in the developing and adult rat cerebellum.Acta Physiol. Scand. 132, 167–173.PubMedGoogle Scholar
  6. Ang L. C., Bhaumick B., and Juurlink B. H. J. (1993) Neurite promoting activity of insulin, insulin-like growth factor I and nerve growth factor on spinal motoneurons is astrocyte dependent.Dev. Brain Res. 74, 83–88.Google Scholar
  7. Araki E., Sun X., Haag B. L. III, Chuang L., Zhang Y., Yang-Feng T. L., Morris F. W., and Kahn C. R. (1993) Human skeletal muscle insulin receptor substrate-1. Characterization on the cDNA, gene, and chromosomal localization.Diabetes 42, 1041–1054.PubMedGoogle Scholar
  8. Araki E., Lipes M. A., Patti M. E., Bruning J. C., Haag B. I., Johnson R. S., and Kahn C. R. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene.Nature 7, 43–58.Google Scholar
  9. Araujo D. M., Lapchak P. A., Collier B., Chabot J.-G., and Quirion R. (1989) Insulin-like growth factor-I (somatomedin-C) receptors in the rat brain: distribution and interaction with the hippocampal cholinergic system.Brain Res. 484, 130–138.PubMedGoogle Scholar
  10. Argetsinger L. S., Hsu G. W., Myers M. G. J., Billestrup N., White M. F., and Carter-Su C. (1995) Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1.J. Biol. Chem. 270, 14,685–14,692.Google Scholar
  11. Ayer-le-Lievre A., Stählbom P. A., and Sara V. R. (1991) Expression of IGF-I and II mRNA in the brain and cranio-facial region of the rat fetus.Development 111, 105–111.PubMedGoogle Scholar
  12. Bach M. A., Shen-Orr Z., Lowe W. L., Jr., Roberts C. T. Jr., and LeRoith D. (1991) Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain.Mol. Brain Res. 10, 43–48.PubMedGoogle Scholar
  13. Backer J. M., Myers M. G., Shoelson S. E., Chin D. J., Jian Sun X., Miralpeix M., Hu P., Margolis B., Skolnik Y., Schlessinger J., and White M. F. (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation.EMBO J. 11 3469–3479.PubMedGoogle Scholar
  14. Backer J., Liu J. P., Robertson E. J., and Efstratiadis A. (1993) Role of insulin-like growth factors in embryonic and postnatal growth.Cell 75, 73–82.Google Scholar
  15. Ballesteros M., Scott C. D., and Baxter R. C. (1990) Developmental regulation of insulin-like growth factor-II/mannose 6-phosphate receptor mRNA in the rat.Biochem. Biophys. Res. Commun. 172, 775–779.PubMedGoogle Scholar
  16. Bare D. J., Lauder J. M., Wilkie M. B., and Maness P. F. (1993) p59fyn in rat brain is localized in developing axon tracts and subpopulations of adult neurons and glia.Oncogene 8, 1429–1436.PubMedGoogle Scholar
  17. Barnea A. and Cho G. (1993) Basic fibroblast growth factor selectively amplifies the functional state of neurons producing neuropeptide Y but not somatostatin in cultures of fetal brain cells: evidence for a cooperative interaction with insulin-like growth factor I.Endocrinology 133, 1895–1898.PubMedGoogle Scholar
  18. Baron-Van Evercooren A., Olichon-Berthe C., Kowalski A., Visciano G., and Van Obberghen E. (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional and cellular analysis.J. Neurosci. Res. 28, 244–253.PubMedGoogle Scholar
  19. Bartlett W. P., Li X. S., Williams M., and Benkovic S. (1991) Localization of insulin-like growth factor-1 mRNA in murine central nervous system during postnatal development.Dev. Biol. 147, 239–250.PubMedGoogle Scholar
  20. Baskin D. G., Sipols A. F., Schwartz M. W., and White M. F. (1993) Immunocytochemical detection of insulin receptor substrate-1 (IRS-1) in rat brain: colocalization with phosphotyrosine.Regul. Pept. 48, 257–266.PubMedGoogle Scholar
  21. Baskin D. G., Schwartz M. W., Sipols A. J., D’Alessio D. A., Goldstein B. J., and White M. F. (1994) Insulin receptor substrate-1 (IRS-1) expression in rat brain.Endocrinology 134 1952–1955.PubMedGoogle Scholar
  22. Batistatou A. and Greene L. A. (1991) Auriinitricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity.J. Cell Biol. 115, 461–471.PubMedGoogle Scholar
  23. Beck K. D. (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons.Prog. Neurobiol. 44, 497–516.PubMedGoogle Scholar
  24. Bohannon N. J., Corp E. S., Wilcox B. J., Figlewicz D. P., Dorsa D. M., and Baskin D. G. (1988) Localization of binding sites for insulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography.Brain Res. 444, 205–213.PubMedGoogle Scholar
  25. Bondy C. A. (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons.J. Neurosci. 11, 3442–3455.PubMedGoogle Scholar
  26. Bondy C. A. and Lee W. (1993a) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain.Ann. NY Acad. Sci. 692, 33–43.PubMedGoogle Scholar
  27. Bondy C. A. and Lee W. (1993b) Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development.J. Neurosci. 13, 5092–5104.PubMedGoogle Scholar
  28. Bondy C. A., Werner H., Roberts C. T. Jr., and LeRoith D. (1992) Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II.Neuroscience 46, 909–923.PubMedGoogle Scholar
  29. Bozyczko-Coyne D., Glicksman M. A., Prantner J. E., McKenna B., Connors T., Friedman C., Dasgupta M., and Neff N. T. (1993) IGF-I supports the survival and/or differentiation of multiple types of central nervous system neurons.Ann. NY Acad. Sci. 692, 311–313.PubMedGoogle Scholar
  30. Brown A. L., Graham D. E., Nissley S. P., Hill D. J., Strain A. J., and Rechler M. M. (1986) Developmental regulation of insulin-like growth factor II mRNA in different rat tissues.J. Bio. Chem. 261, 13,144–13,150.Google Scholar
  31. Carson M. J., Behringer R. R., Brinster R. L., and McMorris F. A. (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice.Neuron 10, 729–740.PubMedGoogle Scholar
  32. Castro-Alamancos M. A. and Torres-Aleman I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I.Proc. Natl. Acad. Sci. USA 90, 7386–7390.PubMedGoogle Scholar
  33. Castro-Alamancos M. A. and Torres-Aleman I. (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide.Proc. Natl. Acad. Sci. USA 91, 10,203–10,207.Google Scholar
  34. Cheatham B. and Kahn C. R. (1995) Insulin action and the insulin signaling network.Endocrine Rev. 16, 117–142.Google Scholar
  35. Cheatham B., Vlahos C., Cheatham L., Wang L., Blenis J., and Kahn C. R. (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis and glucose transporter translocation.Mol. Cell. Biol. 14, 4902–4911.PubMedGoogle Scholar
  36. Chuang L. M., Hausdorff S. F., Myers M. G. J., White M. F., Birnbaum M. J., and Kahn C. R. (1994) Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling inXenopus oocytes.J. Biol. Chem. 269, 27,645–27,649.Google Scholar
  37. Cortizo A. M., van Arnaldo J., Burgess S. K., and Espinal J. (1991) Insulin and IGF-I stimulated RNA synthesis in primary cultures of neuronal cells: involvement of cyclic AMP and protein kinase-C.Acta Pysiol. Pharmalcol. Ther. Latinoamericana 41, 295–307.Google Scholar
  38. Deltour L., Leduque P., Blume N., Madsen O., Dubois P., Jami J., and Bucchini D. (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo.Proc. Natl. Acad. Sci. USA 90, 527–531.PubMedGoogle Scholar
  39. D’Ercole A. J. (1993) Expression of insulin-like growth factor-I in transgenic mice.Ann. NY Acad. Sci. 692, 149–160.PubMedGoogle Scholar
  40. D’Ercole A. J., Dai Z., Xing Y., Boney C., Wilkie M. B., Lauder J. M., Han V. K. M., and Clemmons D. R. (1994) Brain growth retardation due to the expression of human insulin-like growth factor binding protein-1 in transgenic mice: an in vivo model for the analysis of igf function in the brain.Dev. Brain Res. 82, 213–222.Google Scholar
  41. DeChiara T. M., Efstratiadis A., and Robertson E. J. (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.Nature 345, 78–80.PubMedGoogle Scholar
  42. DeChiara T. M., Robertson E. J., and Efstratiadis A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene.Cell 64, 849–859.PubMedGoogle Scholar
  43. De Pablo F. and De la Rosa E. J. (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors.Trends Neurosci. 18, 143–150.PubMedGoogle Scholar
  44. Devaskar S. U., Singh B. S., Carnaghi L. R., Rajakumar P. A., and Giddings S. J. (1993) Insulin II gene expression in rat central nervous system.Regul. Pep. 48, 55–63.Google Scholar
  45. Devaskar S. U., Giddings S. J., Rajakumar P. A., Carnaghi L. R., Menon R. K., and Zahm D. S. (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells.J. Biol. Chem. 269, 8445–8454.PubMedGoogle Scholar
  46. Devaskar S. U., Holekamp N., Karycki L., and Devaskar U. P. (1995) Ontogenesis of the insulin receptors in the rabbit brain.Horm. Res. 24, 319–327.Google Scholar
  47. Doré S., Kar S., and Quirion R. (1995a) Evidence for the presence of two distinct insulin-like growth factor (IGF-I and IGF-II) receptors in cultured rat hippocampal neurons and different process of internalization.Neuroscience, in press.Google Scholar
  48. Doré S., Krieger C., Kar S., and Quirion R. (1996b) Distribution and levels of insulin-like growth factors (IGF-I and IGF-II) and insulin receptor binding sites in spinal cords of amyotrophic lateral sclerosis (ALS) patients.Mol. Brain Res. 41, 128–223.PubMedGoogle Scholar
  49. Drago J., Murphy M., Carroll S. M., Harvey A. R., and Bartlett P. F. (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I.Proc. Natl. Acad. Sci. USA 88, 2199–2203.PubMedGoogle Scholar
  50. Drakenberg K., Östenson G.-C., and Sara V. R. (1990) Circulating forms and biological activity of intact and truncated insulin-like growth factor-1 (IGF-1) in adult and neonatal rat.Acta Endocrinol. 123, 43–51.PubMedGoogle Scholar
  51. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J., Masiar F., Kan Y. W., Goldfine I. D., Roth R. A., and Rutter W. J. (1985) The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling.Cell 40, 747–758.PubMedGoogle Scholar
  52. Escobedo J. A., Navankasattusas S., Kavanaugh W. M., Milfay D., Fried V. A., and Williams L. T. (1991) cDNA cloning of a novel 85 kD protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor.Cell 65, 75–82.PubMedGoogle Scholar
  53. Fantl W. J., Johnson D. E., and Williams L. T. (1993) Signalling by receptor tyrosine kinases.Ann. Rev. Biochem. 62, 453–481.PubMedGoogle Scholar
  54. Feener E. P., Backer J. M., King G. L., Wilden P. A., Sun X., Kahn C. R., and White M. F. (1993) Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor.J. Biol. Chem. 268, 11,256–11,264.Google Scholar
  55. Folli F., Saad M. J. A., Backer J. M., and Kahn C. R. (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat.J. Biol. Chem. 267, 22,171–22,177.Google Scholar
  56. Folli F., Bonfanti L., Renard E., Kahn C. R., and Merighi A. (1994) Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system.J. Neurosci. 14, 6412–6422.PubMedGoogle Scholar
  57. Folli F., Patti M. E., Chen C., Ghidella S., Merighi A., and Kahn C. R. (1995) Roles of the insulin-IGF-1 receptor signalling network in the central nervous system.Proc. 77th Ann. Mtg. Endocrine Soc., p. 515 (abstract).Google Scholar
  58. Franke T. F., Yang S., Chan T. O., Datta K., Kazlauskas A., Morrison D. K., Kaplan D. R., and Tsichlis P. N. (1995) The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.Cell 81, 727–736.PubMedGoogle Scholar
  59. Gage F. H., Ray, J., and Fisher J. L. (1995) Isolation, characterization, and use of stem cells from the CNS.Ann. Rev. Neurosci. 18, 159–192.PubMedGoogle Scholar
  60. Gammeltoft S., Haselbacher G. K., Humbel R. E., Fehlmann M., and Van Obberghen E. (1985) Two types of receptor for insulin-like growth factors in mammalian brain.EMBO J. 4, 3407–3412.PubMedGoogle Scholar
  61. Gammeltoft S., Christiensen J., Nielsen F. C., and Verland S. (1991) Insulin-like growth factor II: complexity of biosynthesis and receptor binding, inMolecular Biology and Physiology of Insulin and Insulin-Like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 31–44.Google Scholar
  62. Garcia-Segura L. M., Perez J., Pons S., Rejas M. T., and Torres-Aleman I. (1991) Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain.Brain Res. 560, 167–174.PubMedGoogle Scholar
  63. Giacobini M. B., Olson M. J., Hoffer B. J., and Sara V. R. (1990) Truncated IGF-1 exerts trophic, effects on fetal brain tissue grafts.Exp. Neurol. 108, 33–39.PubMedGoogle Scholar
  64. Girault J. A., Chamak B., Bertuzzi G., Tixier H., Wang J. K., Pang D. T., and Greengard P. (1992) Protein phosphotyrosine in mouse brain: developmental changes and regulation by epidermal growth factor, type I insulin-like growth factor, and insulin.J. Neurochem. 58, 518–528.PubMedGoogle Scholar
  65. Gluckman P. D., Guan J., Beilharz E. J., Klempt N. D., Klempt M., Miller O., Sirimanne E., Dragunow M., and Williams C. E. (1993) The role of the insulin-like growth factor system in neuronal rescue.Ann. NY Acad. Sci. 262, 138–148.Google Scholar
  66. Gout I., Dhand R., Hiles I. D., Fry M. J., Panayotou G., Das P., Truong O., Totty N. F., Hsuan J., and Booker G. W. (1993) The GTPase dynamin binds to and is activated by a subset of SH3 domains.Cell 75, 25–36.PubMedGoogle Scholar
  67. Grant S. G., O’Dell T. J., Karl K. A., Stein P. L., Soriano P., and Kandel E. R. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice.Science 258, 1903–1910.PubMedGoogle Scholar
  68. Green B. N., Jones S. B., Streck R. D., Wood T. L., Rotwein P., and Pintar J. E. (1994) Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development.Endocrinology 134, 954–962.PubMedGoogle Scholar
  69. Guthrie K. M., Wilson D. A., and Leon M. (1990) Early unilateral deprivation modifies olfactory bulb function.J. Neurosci. 10, 3402–3412.PubMedGoogle Scholar
  70. Hansson H.-A., Nilsson A., Isgaard J., Billing H., Isaksson O., Skottner A., Andersson I. K., and Rozell B. (1988) Immunohistochemical localization of insulin-like growth factor I in the adult rat.Histochemistry 89, 403–410.PubMedGoogle Scholar
  71. Havrankova J., Roth J., and Brownstein M. (1978) Insulin receptors are widely distributed in the central nervous system of the rat.Nature 272, 827–829.PubMedGoogle Scholar
  72. Havrankova J., Brownstein M., and Roth J. (1981) Insulin and insulin receptors in rodent brain.Diabetologia 20, 268–273.PubMedGoogle Scholar
  73. Heidenreich K. A., Toledo S. P., and Kenner K. A. (1991) Regulation of protein phosphorylation by insulin and insulin like growth factors in cultured fetal neurons.Adv. Exp. Med. Biol. 293, 379–384.PubMedGoogle Scholar
  74. Hiles I. D., Otsu M., Volinna S., Fry M. J., Gout I., Dhand R., Panayotou G., Ruiz-Larrea F., Thompson A., Totty N. F., Hsuan J., Courtneidge S. A., Parker P. J., and Waterfield M. D. (1992) Phosphatidylinositol 3-kinase: structure and expression of the 110 kD catalytic subunit.Cell 70, 419–429.PubMedGoogle Scholar
  75. Hill J. M., Lesniak M. A., Pert C. B., and Roth J. (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas.Neuroscience 17, 1127–1138.PubMedGoogle Scholar
  76. Hökfelt T., Johansson O., Ljungdahl Å., Lundberg J. M., and Schultzberg M. (1980) Peptidergic neurones.Nature 284, 515–521.PubMedGoogle Scholar
  77. Hubbard S. R., Wei L., Ellis L., and Hendrickson W. A. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor.Nature 372, 746–754.PubMedGoogle Scholar
  78. Hung J., Granner T. C., Emos K. P., Kazlauskas A., and Blenis J. (1994) PDGF and insulin-dependent pp70S6k activation mediated by phosphatidylinositol 3-OH kinase.Nature 370, 71–75.Google Scholar
  79. Hunter T. (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase.Cell 83, 1–4.PubMedGoogle Scholar
  80. Hynes M. A., Brooks P. J., Van Wyk J. J., and Lund P. K. (1988) Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain.Mol. Endocrinol. 2, 47–54.PubMedGoogle Scholar
  81. Imamoto A. and Soriano P. (1993) Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice.Cell 73, 1117–1124.PubMedGoogle Scholar
  82. Irminger J., Rosen K. M., Humbel R. E., and Villa-Komaroff L. (1987) Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5′ untranslated, regions.Proc. Natl. Acad. Sci. USA 84, 6330–6333.PubMedGoogle Scholar
  83. Ito M. (1989) Long-term depression.Ann. Rev. Neurosci. 12, 85–102.PubMedGoogle Scholar
  84. Jones J. I. and Clemmons D. R. (1995) Insulin-like growth factors and their binding proteins: biological actions.Endocr. Rev. 16, 3–34.PubMedGoogle Scholar
  85. Kar S., Chabot J.-G., and Quirion R. (1993) Quantitative autoradiographic localization of [125I] insulin-like growth factor I, [125I] insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain.J. Comp. Neurol. 333, 375–397.PubMedGoogle Scholar
  86. Kasuga M., Hedo J. A., Yamada K. M., and Kahn C. R. (1982a) The structure of the insulin receptor and its subunits: evidence for multiple non-reduced forms and a 210K possible proreceptor.J. Biol. Chem. 257, 10,392–10,399.Google Scholar
  87. Kasuga M., Karlsson F. A., and Kahn C. R. (1982b) Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor.Science 215, 185–187.PubMedGoogle Scholar
  88. Kasuga M., Zick Y., Blithe D. L., Crettaz M., and Kahn C. R. (1982c) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system.Nature 298, 667–669.PubMedGoogle Scholar
  89. Konishi Y., Takahashi K., Chui D. H., Rosenfeld R. G., Himeno M., and Tabira T. (1994) Insulin-like growth factor II promotes in vitro cholinergic development of mouse septal neurons: comparison with the effects of insulin-like growth factor I.Brain Res. 649, 53–61.PubMedGoogle Scholar
  90. Kornfeld S. (1987) Trafficking of lysosomal enzymes.FASEB J. 1, 462–468.PubMedGoogle Scholar
  91. Kornfeld S. (1992) Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors.Ann. Rev. Biochem. 61, 307–330.PubMedGoogle Scholar
  92. Kovacina K. S. and Roth R. A. (1995) Characterization of the endogenous insulin receptor-related receptor in neuroblastomas.J. Biol. Chem. 270, 1881–1887.PubMedGoogle Scholar
  93. Kuhne M. R., Pawson T., Lienhard G. E., and Feng G. S. (1993) The insulin receptor substrate-1 associates with the SH2-containing phosphotyrosine phosphatase 5YP.J. Biol. Chem. 268, 11,479–11,481.Google Scholar
  94. Lammers R., Gray A., Schlessinger J., and Ullrich A. (1989) Differential signaling potential of insulin and IGF-I receptor cytoplasmic domains.EMBO J. 8, 1369–1375.PubMedGoogle Scholar
  95. Lee J. E., Pintar J., and Efstratiadis A. (1990) Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis.Development 110, 151–159.PubMedGoogle Scholar
  96. Lee W.-H., Michels K. M., and Bondy C. A. (1993) Localization of insulin-like growth factor binding protein 2 mRNA during postnatal brain development: correlation with IGF-I and II.Neuroscience 53, 251–265.PubMedGoogle Scholar
  97. LeRoith D., Werner H., Beitner-Johnson D., and Roberts C. T. Jr. (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor.Endocr. Rev. 16, 143–163.PubMedGoogle Scholar
  98. Lesniak M. A., Hill J. M., Kiess W., Rojeski M., Pert C. B., and Roth J. (1988) Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin.Endocrinology 123, 2089–2099.PubMedGoogle Scholar
  99. Liu J., Baker J., Perkins A. S., Robertson E. J., and Efstratiadis A. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).Cell 75, 59–72.PubMedGoogle Scholar
  100. Logan A., Gonzales A. M., Hill D. J., Berry M., Gregson N. A., and Baird A. (1994) Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain.Endocrinology 135, 2255–2264.PubMedGoogle Scholar
  101. Lowenstein E. J., Daly R. G., Batzer A. G., Li W., Margolis B., Lammers R., Ullrich A., Skolnik E. Y., Bar-Sagi D., and Schlessinger J. (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling.Cell 70, 431–442.PubMedGoogle Scholar
  102. Lund P. K., Moats-Staats B. M., Hynes M. A., Simmons J. G., Jansen M., D’Ercole A. J., and Van Wyk J. J. (1986) Somatomedin-C/insulin-like growth factor I and insulin-like growth factor II mRNAs in rat fetal and adult tissues.J. Biol. Chem. 261, 14,539–14,544.Google Scholar
  103. Ma Z. Q., Santagati S., Patrone C., Pollio G., Vegeto E., and Maggi A. (1994) Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3.Mol. Endocrinol. 8, 910–918.PubMedGoogle Scholar
  104. Marks J. L., Porte D., Stahl W. L., and Baskin D. G. (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization.Endocrinology 127, 3234–3236.PubMedGoogle Scholar
  105. Marks J. L., Porte D., and Baskin D. G. (1991) Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization.Mol. Endocrinology 5, 1158–1168.Google Scholar
  106. Massague J., Pilch P. F., and Czech M. P. (1982) Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries.Proc. Natl. Acad. Sci. USA 77, 7137–7141.Google Scholar
  107. Matsuo K., Niwa M., Kurihara M., Shigematsu K., Yamashita S., Ozaki M., and Nagataki S. (1991) Receptor autoradiographic analysis of insulin-like growth factor-I (IGF-I) binding sites in rat forebrain and pituitary gland.Cell. Mol. Neurobiol. 9, 357–367.Google Scholar
  108. McMorris F. A., Mozell R. L., Carson M. J., Shinar Y., Meyer R. D., and Marchetti N. (1993) Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors.Ann. NY Acad. Sci. 262, 321–334.Google Scholar
  109. McPherson P. S., Czernik A. J., Chilcote T. J., Onofri F., Benfenati F., Greengard P., Schlessinger J., and DeCamilli P. (1994a) Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I.Proc. Natl. Acad. Sci. USA 91, 6486–6490.PubMedGoogle Scholar
  110. McPherson P. S., Takei K., Schmid S. L., and DeCamilli P. (1994b) p145, a major grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation.J. Biol. Chem. 269, 30,132–30,139.Google Scholar
  111. Mermaridis D. G., Morse D. E., Pansky B., and Budd G. C. (1990) Insulin immunoreactivity in the fetal and neonatal rat retina.Neurosci. Lett. 118, 116–119.Google Scholar
  112. Mozell R. L. and McMorris F. A. (1991) Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures.J. Neurosci. Res. 30, 382–390.PubMedGoogle Scholar
  113. Myers M. G., Jr., Granner T. C., Wang, L. M., Sun X. J., Pierce J. H., Blenis J., and White M. F. (1994) Insulin receptor substrate-1 mediates phospatidylinositol 3′ kinase and p70S6K signaling during insulin, insulin-like growth factor 1 and interleukin-4 stimulation.J. Biol. Chem. 269, 28,783–28,789.Google Scholar
  114. Myers M. G. J., Backer J. M., Sun X., Shoelson S. E., Hu, P., Schlessinger, J., Yoakim M., Schaffhausen B., and White M. F. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85.Proc. Natl. Acad. Sci. USA 89, 10,350–10,354.Google Scholar
  115. Myers M. G. J., Sun X., Cheatham B., Jachna B. R., Glasheen E. M., Backer J. M., and White M. F. (1993) IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase.Endocrinology 132, 1421–1430.PubMedGoogle Scholar
  116. Myers M. G. J., Sun X., and White M. F. (1995) The IRS-1 signaling system.TIBS 19, 289–294.Google Scholar
  117. Nada S., Yagi T., Takeda H., Tokunaga T., Nakagawa H., Ikawa Y., Okada M., and Aizawa S. (1993) Constitutive activation of Src family kinases in mouse embryos that lack Csk.Cell 73, 1125–1135.PubMedGoogle Scholar
  118. Nehlig A., De Vasconcelos A. P., and Boyet S. (1988) Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during post-natal development.J. Neurosci. 8, 2321–2333.PubMedGoogle Scholar
  119. Nielsen F. C. and Gammeltoft S. (1990) Mannose-6-phosphate stimulates proliferation of neuronal precursor cells.FEBS Lett. 262, 142–144.PubMedGoogle Scholar
  120. Nielsen F. C., Wang E., and Gammeltoft S. (1991) Receptor binding, endocytosis, and mitogenesis of insulin-like growth factors I and II in fetal rat brain neurons.J. Neurochem. 56, 12–21.PubMedGoogle Scholar
  121. Nieto-Bona M. P., Garcia-Segura L. M., and Torres-Aleman I. (1993) Orthograde transport and release of insulin-like growth factor I from the inferior olive to the cerebellum.J. Neurosci. Res. 36, 520–527.PubMedGoogle Scholar
  122. Noguchi T., Kurata L. M., and Sugisaki T. (1987) Presence of somatomedin-C immunoreactive substance in the central nervous system: immunohistochemical mapping studies.Neuroendocrinology 46, 277–282.PubMedGoogle Scholar
  123. Ocrant I., Valentino K. L., Eng L. F., Hintz R. L., Wilson D. M., and Rosenfeld R. N. (1988) Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system.Endocrinology 123, 1023–1034.PubMedGoogle Scholar
  124. Ocrant I. (1993) Insulin-like growth factor binding proteins in nervous-tissue-derived cells.Ann. NY Acad. Sci. 692, 44–50.PubMedGoogle Scholar
  125. O’Dell T. J., Kandel E. R., and Grant S. G. N. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.Letters to Nature 353, 558–560.Google Scholar
  126. Okada M., Nada S., Yamanashi Y., Yamamoto T., and Nakagawa H. (1991) CSK: a protein-tyrosine kinase involved in regulation of src family kinases.J. Biol. Chem. 266, 24,249–24,252.Google Scholar
  127. Olson J. A. J., Shiverick K. T., Ogilvie S., Buhi W. C., and Raizada M. K. (1991) Developmental expression of rat insulin-like growth factor binding protein-2 by astrocytic glial cells in culture.Endocrinology 129, 1066–1074.PubMedGoogle Scholar
  128. Otsu M., Hiles I., Gout I., Fry M. J., Ruis-Larrea F., Panayotou G., Thompson A., Dhand R., Hsuan J., Totty N., Smith A. D., Morgan S. J., Courtneidge S. A., Parker P. J., and Waterfield M. D. (1991) Characterization of two 85 kD proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes and PI3-kinase.Cell 65, 91–104.PubMedGoogle Scholar
  129. Park G. H. and Buetow D. E. (1991) Genes for insulin-like growth factors I and II are expressed in senescent rat tissues.Gerontology 37, 310–316.PubMedGoogle Scholar
  130. Patti M., Sun X., Bruening J. C., Araki E., Lipes M. A., White M. F., and Kahn C. R. (1995) 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.J. Biol. Chem. 270, 24,670–24,673.Google Scholar
  131. Pawson T. (1995) Protein modules and signalling networks.Nature 373, 573–580.PubMedGoogle Scholar
  132. Perez-Villamil B., De la Rosa E. J., Morales A. V., and De Pablo F. (1994) Developmentally regulated expression of the preproinsulin gene in the chicken embryo during gastrulation and neurulation.Endocrinology 135, 2342–2350.PubMedGoogle Scholar
  133. Petruzzelli L. M., Gangaly S., Smith C. R., Cobb M. H., Rubin C. S., and Rosen O. M. (1982) Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta.Proc. Natl. Acad. Sci. USA 79, 6792–6796.PubMedGoogle Scholar
  134. Pillay T. S., Whittaker J., Lammers R., Ullrich A., and Siddle K. (1991) Multisite serine phosphorylation of the insulin and IGF-I receptors in transfected cells.FEBS Lett. 288, 206–211.PubMedGoogle Scholar
  135. Pomerance M., Gavaret J., Jacquemin C., Matricon C., Toru-Delbauffe D., and Pierre M. (1988) Insulin and insulin-like growth factor I receptors during postnatal development in the rat brain.Dev. Brain Res. 62, 169–175.Google Scholar
  136. Pons S. and Torres-Aleman I. (1992) Basic fibroblast growth factor modulates insulin-like growth factor-I, its receptor, and its binding proteins in hypothalamic cell cultures.Endocrinology 131, 2271–2278.PubMedGoogle Scholar
  137. Pons S., Asano T., Glasheen E. M., Miralpeix M., Weiland A., Zhang Y., Myers M. G. J., Sun X., and White M. F. (1995) The structure and function of p55pik reveals a new regulatory subunit for the phosphatidyinositol-3 kinase.Mol. Cell. Biol. 15, 4453–4465.PubMedGoogle Scholar
  138. Posner B. I., Kelly P. A., Shiu R. P. C., and Friesen H. G. (1974) Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variations and characterization.Endocrinology 95, 521–531.PubMedGoogle Scholar
  139. Puro D. G. and Agardh E. (1984) Insulin-mediated regulation of neuronal maturation.Science 225, 1170–1172.PubMedGoogle Scholar
  140. Raizada M. K. (1991) Insulin-like growth factor I: a possible modulator of intercellular communication in the brain, inMolecular Biology and Physiology of Insulin and Insulin-Like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 493–505.Google Scholar
  141. Reinhardt R. R., Chin E., Zhang B., Roth R. A., and Bondy C. A. (1994) Selective coexpression of insulin receptor-related receptor (IRR) and TRK in NGF-sensitive neurons.J. Neurosci. 14, 4674–4683.PubMedGoogle Scholar
  142. Rothenberg P. L., Lane W. S., Karasik A., Backer J., White M., and Kahn C. R. (1991) Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase.J. Biol. Chem. 266, 8302–8311.PubMedGoogle Scholar
  143. Rothwein P., Burgess S. K., Milbrandt J. D., and Krause J. E. (1988) Differential expression of insulin-like growth factor genes in rat central nervous systemProc. Natl. Acad. Sci. USA 85, 265–269.Google Scholar
  144. Russo V. C. and Werther G. A. (1994) Des (1–3) IGF-I potently enhances differentiated cell growth in olfactory bulb organ culture.Growth Factors 11, 301–311.PubMedGoogle Scholar
  145. Saltiel A. R. and Ohmichi M. (1993) Pleiotropic signaling from receptor tyrosine kinases.Curr. Opin. Neurobiol. 3, 352–359.PubMedGoogle Scholar
  146. Sara V. R. and Carlsson-Swirut C. (1990) Insulin-like growth factors in the central nervous system: biosynthesis and biological role, inGrowth Factors: From Genes to Clinical Application (Sara V. R., Hall K., and Löw H., eds.), Raven, New York, pp. 179–199.Google Scholar
  147. Sara V. R. and Hall K. (1990) Insulin-like growth factors and their binding proteins.Physiol. Rev. 70, 591–605.PubMedGoogle Scholar
  148. Sara V. R., Hall K., Holtz H. V., Humbel R. E., Sjogren B., and Wetterberg L. (1982) Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain.Neurosci. Lett. 34, 39–44.PubMedGoogle Scholar
  149. Sara V. R., Carlsson-Swirut C., Andersson C., Hall E., Sjogren B., Holmgren A., and Jornvall H. (1986) Characterization of somatomedins from human brain: identification of a variant form of IGF-I.Proc. Natl. Acad. Sci. USA 83, 4904–4907.PubMedGoogle Scholar
  150. Sara V. R., Carlsson-Swirut C., Bergman T., Jornvall H., Roberts P. J., Crawford M., Hakansson N., Civalero I., and Nordberg A. (1989) Identification of gly-pro-glu (GPE) the aminoterminal tripeptide of IGF-I which is truncated in brain, as a novel neuroactive peptide.Biochem. Biophys. Res. Commun. 165, 766–771.PubMedGoogle Scholar
  151. Sara V. R., Sandberg-Nordqvist A., Carlsson-Swirut C., Bergman T., and Ayer-LeLievre C. (1991) Neuroactive products of IGF-I and IGF-2 gene expression in the CNS, inMolecular Biology and Physiology of Insulin and Insulin-like Growth Factors (Raizada M. K. and LeRoith D., eds.), Plenum, New York, pp. 439–448.Google Scholar
  152. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S., Ashkenazi M., Pecker I., Frydman M., Harnik R., Patanjali S. R., Simmons A., Clines G. A., Sartiel A., Gatti R. A., Chessa L., Sanal O., Lavin M. F., Jaspers N. G. J., Taylor A. M. R., Arlett C. F., Miki T., Weissman S. M., Lovett M., Collins F. S., and Shiloh Y. (1995) A single ataxia telangectasia gene with a product similar to PI 3-kinase.Science 268, 1749–1753.PubMedGoogle Scholar
  153. Scavo L., Shuldiner A. R., Serrano J., Dashner R., Roth J., and De Pablo F. (1991) Genes encoding receptors for insulin and insulin-like growth factor I are expressed inXenopus oocytes and embryos.Proc. Natl. Acad. Sci. USA 88, 6214–6218.PubMedGoogle Scholar
  154. Schumacher R., Mosthaf L., Schlessinger J., Brandenburg D., and Ullrich A. (1991) Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors.J. Biol. Chem. 266, 19,288–19,295.Google Scholar
  155. Shemer J., Adamo M., Wilson G. L., Heffez D., Zick Y., and LeRoith D. (1987a) Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells.J. Biol. Chem. 262, 15,476–15,482.Google Scholar
  156. Shemer J., Raizada M. K., Masters B. A., Ota A., and Lerdith D. (1987b) Insulin-like growth factor-I receptors in neuronal and glial cells.J. Biol. Chem. 262, 7693–7699.PubMedGoogle Scholar
  157. Shemer J., Adamo M., Raizada M. K., Heffez D., Zick Y., and Le Roith D. (1989) Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture.J. Mol. Neurosci. 1, 3–8.PubMedGoogle Scholar
  158. Skolnik E. Y., Margolis B., Mohammadi M., Lowenstein E., Fischer R., Drepps A., Ullrich A., and Schlessinger J. (1991) Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases.Cell 65, 83–90.PubMedGoogle Scholar
  159. Smith C. B. (1991) The measurement of regional rates of cerebral protein synthesis.Neurochem. Res. 16, 1037–1045.PubMedGoogle Scholar
  160. Sokoloff L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose.J. Cerebral Blood Flow Metab. 1, 7–36.Google Scholar
  161. Soos M. A., Field C. E., and Siddle K. (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity.Biochem. J. 290, 419–426.PubMedGoogle Scholar
  162. Stylianopoulou F., Efstratiadis A., Herbert J., and Pintar J. (1988a) Pattern of the insulin-like growth factor II gene expression during rat embryogenesis.Development 103, 497–506.PubMedGoogle Scholar
  163. Stylianopoulou, F., Herbert J., Soares M. B., and Efstratiadis A. (1988b) Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system.Proc. Natl. Acad. Sci. 85, 141–144.PubMedGoogle Scholar
  164. Sullivan K. A. and Feldman E. L. (1994) Immunohistochemical localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 during development in the rat brain.Endocrinology 135, 540–547.PubMedGoogle Scholar
  165. Sun X., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., and White M. F. (1991) The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein.Nature 352, 73–77.PubMedGoogle Scholar
  166. Sun X., Miralpeix M., Myers M. G. J., Glasheen E. M., Backer J. M., Kahn C. R., and White M. F. (1992) The expression and function of IRS-1 in insulin signal transmission.J. Biol. Chem. 267, 22,662–22,672.Google Scholar
  167. Sun X., Crimmins D. L., Myers M. G. J., Miralpeix M., and White M. F. (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1.Mol. Cell. Biol. 13, 7418–7428.PubMedGoogle Scholar
  168. Sun X. J., Wang L., Zhang Y., Yenush L., Myers M. G., Jr., Giasheen E., Lane W. S., Pierce J. H., and White M. F. (1995) Role of IRS-2 in insulin and cytokine signalling.Nature 377, 173–177.PubMedGoogle Scholar
  169. Takei K., McPherson P. S., Schmid S. L., and De Camilli P. (1995) Tubular membrane invaginations coated by dynsmin ring are induced by GTP-ase in nerve terminals.Nature 374, 186–190.PubMedGoogle Scholar
  170. Tamemoto H., Kadowaki T., Tobe K., Yagi T., Sakura H., Hayakawa T., Terauchi Y., Ueki K., Kaburagi Y., Satoh S., Sekihara H., Yoshioka S., Horikoshi H., Furuta Y., Ikawa Y., Kasuga M., Yazaki Y., and Aizawa S. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1.Nature 372, 182–186.PubMedGoogle Scholar
  171. Terlau H. and Seifert W. (1989) Influence of epidermal growth factor on long-term potentiation in hippocampal slice.Brain Res. 484, 352–356.PubMedGoogle Scholar
  172. Terlau H. and Seifert W. (1990) Fibroblast growth factor enhances long-term potentiation in the hippocampal slice.Eur. J. Neurosci. 2, 973–977.PubMedGoogle Scholar
  173. Tornqvist H. E. and Avruch J. (1988) Relationship of site-specific tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity.J. Biol. Chem. 263, 4593–4601.PubMedGoogle Scholar
  174. Tornqvist H. E., Gunsalus J. R., Nemenoff R. A., Frackelton A. R., Pierce M. W., and Avruch J. (1988) Identification of the insulin receptor tyrosine residues undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells.J. Biol. Chem. 263, 350–359.PubMedGoogle Scholar
  175. Treadway J. L., Morrison B. D., Soos M. A., Siddle K., Olefsky J., Ullrich A., McClain D. A., and Pessin J. E. (1991) Transdominant inhibition of tyrosine kinase activity in mutant insulin insulin-like growth factor I hybrid receptors.Proc. Natl. Acad. Sci. USA 88, 214–218.PubMedGoogle Scholar
  176. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y., Tsubokawa M., Mason A., Seeburg P. H., Grunfeld C., Rosen O. M., and Ramachandran J. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.Nature 313, 756–761.PubMedGoogle Scholar
  177. Ullrich A., Gray A., Tam A. W., Yang-Feng T. L., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E., Jacobs S., Franke U., Ramachandran J., and Fujita-Yamaguchi Y. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity.EMBO J. 5, 2503–2512.PubMedGoogle Scholar
  178. Umemori H., Sato S., Yagi T., Aizawa S., and Yamamoto T. (1994) Initial events of myelination involve Fyn tyrosine kinase signalling.Nature 367, 572–576.PubMedGoogle Scholar
  179. Unger J., McNeill T. H., Moxley R. T. III, White M., Moss A., and Livingston J. N. (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain.Neuroscience 31, 143–157.PubMedGoogle Scholar
  180. Unger J. W., Livingston J. N., and Moss A. M. (1991a) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects.Prog. Neurobiol. 36, 343–362.PubMedGoogle Scholar
  181. Unger J. W., Moss A. M., and Livingston J. N. (1991b) Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat.Neuroscience 42, 853–861.PubMedGoogle Scholar
  182. Valentino K. L., Pham H., Ocrant I., and Rosenfeld R. G. (1988) Distribution of insulin-like growth factor II receptor immunoreactivity in rat tissues.Endocrinology 122, 2753–2763.PubMedGoogle Scholar
  183. Valentino K. L., Ocrant I., and Rosenfeld R. G. (1990) Developmental expression of insulin-like growth factor II receptor immunoreactivity in the rat central nervous system.Endocrinology 126, 914–920.PubMedGoogle Scholar
  184. Varticovski L., Harrison-Findik D., Keeler M. L., and Susa M. (1994) Role of PI 3-kinase in mitogenesis.Biochem. Biophys. Acta 1226, 1–11.PubMedGoogle Scholar
  185. Wang L. M., Keegan A. D., Paul W. E., Heidaran M. A., Gutkind J. S., and Pierce J. H. (1992) IL-4 activates a distinct signal transduction cascade from IL-3 in factor dependent myeloid cells.EMBO J. 11, 4899–4908.PubMedGoogle Scholar
  186. Wang L. M., Keegan A. D., Li W., Lienhard G. E., Pacini S., Gutkind J. S., Myers M. G. J., Sun X., White M. F., Aaronson S. A., Paul W. E., and Pierce J. H. (1993a) Common elements in IL4 and insulin signaling pathways in factor dependent hematopoietic cells.Proc. Natl. Acad. Sci. USA 90, 4032–4036.PubMedGoogle Scholar
  187. Wang L. M., Myers M. G. J., Sun X., Aaronson S. A., White M. F., and Pierce J. H. (1993b) IRS-1: essential for insulin and IL-4-stimulated mitogenesis in hematopoietic cells.Science 261, 1591–1594.PubMedGoogle Scholar
  188. Welham M. J., Learmont L., Bone H., and Schrader J. W. (1995) Interleukine-13 signal transduction in linphohemopoietic cells: similarities and differences in signal transduction with interleukin-4 and insulin.J. Biol. Chem. 270, 12,286–12,296.Google Scholar
  189. Werner H., Raizada M. K., Mudd L. M., Foyt H. F., Simpson I. A., Roberts C. T., Jr., and Le Roith D. (1989a) Regulation of rat brain/hepG2 glucose transporter gene expression by insulin and IGF-I in primary cultures of neuronal and glial cells.Endocrinology 125, 314–320.PubMedGoogle Scholar
  190. Werner H., Woloschak M., Adamo M., Shen-Orr Z., Roberts C. T., Jr., and LeRoith D. (1989b) Developmental regulation of the rat insulin-like growth factor I receptor gene.Proc. Natl. Acad. Sci. USA 86, 7451–7455.PubMedGoogle Scholar
  191. Werner H., Roberts C. T., Jr., Raizada M. K., Bondy C. A., Adamo M., and Le Roith D. (1993) Developmental regulation of the insulin-like growth factor receptors in the central nervous system, inGrowth Factors and Hormones (Zagon I. S. and McLaughlin P. J., eds.), Chapman & Hall, New York, 109–127.Google Scholar
  192. Werther G. A., Hogg A., Oldfield B. J., McKinley M. J., Figdor R., and Mendelsohn F. A. O. (1989) Localization and characterization of IGF-I receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry a distinct distribution from insulin receptors.J. Neuroendocrinol. 1, 369–377.Google Scholar
  193. White M. F. and Kahn C. R. (1994) The insulin signaling system.J. Biol. Chem. 269, 1–5.PubMedGoogle Scholar
  194. White M. F., Maron R., and Kahn C. R. (1985) Insulin rapidly stimulates tyrosine phosphorylation of aM r 185,000 protein in intact cells.Nature 318, 183–186.PubMedGoogle Scholar
  195. White, M. F., Shoelson S. E., Keutmann H., and Kahn C. R. (1988a) A cascade of tyrosine autophosphorylation in the β-subunit activates the insulin receptor.J. Biol. Chem. 263, 2969–2980.PubMedGoogle Scholar
  196. White M. F., Livingston J. N., Backer J. M., Lauris V., Dull T. J., Ullrich A., and Kahn C. R. (1988b) Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity.Cell 54, 641–649.PubMedGoogle Scholar
  197. Wilden P. A., Kahn C. R., Siddle K., and White M. F. (1992a) Insulin receptor kinase domain autophosphorylation regulates receptor enzymatic function.J. Biol. Chem. 267, 16,660–16,668.Google Scholar
  198. Wilden P. A., Siddle K., Haring E., Backer J. M., White M. F., and Kahn C. R. (1992b) The role of insulin receptor kinase domain autophosphorylation in receptor-mediated activities.J. Biol. Chem. 267, 13,719–13,727.Google Scholar
  199. Wolf G., Trüb T., Ottinger E., Groninga L., Lynch A., White M. F., Miyazaki M., Lee J., and Shoelson S. E. (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities.J. Biol. Chem. 370, 27,407–27,410.Google Scholar
  200. Wozniak M., Rydzewski B., Baker S. P., and Raizada M. K. (1993) The cellular and physiological actions of insulin in the central nervous system.Neurochem. Int. 22, 1–10.PubMedGoogle Scholar
  201. Yagi T., Aizawa S., Tokunaga T., Shigetani Y., Takeda N., and Ikawa Y. (1995) A role for fyntyrosine kinase in the suckling behaviour of neonatal mice.Nature 366, 742–745.Google Scholar
  202. Yamaguchi F., Itano T., Mizobuchi M., Miyamoto O., Janjua N. A., Matsui H., Tokuda M., Ohmoto T., Hosokawa K., and Hatase O. (1990) Insulin-like growth factor I (IGF-I) distribution in the tissue and extracellular compartment in different regions of rat brain.Brain Res. 533, 344–347.PubMedGoogle Scholar
  203. Yao R. and Cooper G. M. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor.Science 267, 2003–2006.PubMedGoogle Scholar
  204. Yao D., Liu X., Hudson L. D., and De F. Webster H. (1995) Insulin-like growth factor I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis.Proc. Natl. Acad. Sci. USA 92, 6190–6194.PubMedGoogle Scholar
  205. Ye P., Carson J., and D’Ercole A. J. (1995) In vivo actions of insulin-like growth-factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice.J. Neurosci. 15, 7344–7356.PubMedGoogle Scholar
  206. Young W., Kuhar M., Roth J., and Brownstein M. (1980) Radiohistochemical localization of insulin receptors in the adult and developing rat brain.Neuropeptides 1, 15–22.Google Scholar
  207. Zachenfels K., Oppenheim R. W., and Roher H. (1995) Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons.Neuron 14, 731–741.Google Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Franco Folli
    • 1
    • 3
    • 2
  • Silvana Ghidella
    • 4
  • Luca Bonfanti
    • 4
  • C. Ronald Kahn
    • 1
  • Adalberto Merighi
    • 4
  1. 1.Research Division, Joslin Diabetes Center, Department of MedicineBrigham and Women’s HospitalBoston
  2. 2.Harvard Medical SchoolBoston
  3. 3.Department of MedicineH. San RaffaeleMilanoItaly
  4. 4.Dipartimento di Morfofisiologia VeterinariaUniversità degli Studi di TorinoTorinoItaly

Personalised recommendations