Molecular Neurobiology

, Volume 13, Issue 2, pp 97–136 | Cite as

Inhibitory glutamate receptor channels

  • Thomas A. Cleland


Inhibitory glutamate receptors (IGluRs) are a family of ion channel proteins closely related to ionotropic glycine and γ-aminobutyric acid (GABA) receptors; They are gated directly by glutamate; the open channel is permeable to chloride and sometimes potassium. Physiologically and pharmacologically, IGluRs most closely resemble GABA receptors; they are picrotoxin-sensitive and sometimes crossdesensitized by GABA. However, the amino acid sequences of cloned IGluRs are most similar to those of glycine receptors. Ibotenic acid, a conformationally restricted glutamate analog closely related to muscimol, activates all IGluRs. Quisqualate is not an IGluR agonist except among pulmonate molluscs and for a unique multiagonist receptor in the crayfishAustropotamobius torrentium. Other excitatory amino acid agonists are generally ineffective. Avermectins have several effects on IGluRs, depending on concentration: potentiation, direct gating, and blockade, both reversible and irreversible. Since IGluRs have only been clearly described in protostomes and pseudocoelomates, these effects may mediate the powerful antihelminthic and insecticidal action of avermectins, while explaining their low toxicity to mammals.

IGluRs mediate synaptic inhibition in neurons and are expressed extrajunctionally in striated muscles. The presence of IGluRs in a neuron or muscle is independent of the presence or absence of excitatory glutamate receptors or GABA receptors in the cell. Generally, extrajunctional IGluRs in muscle have a higher sensitivity to glutamate than do neuronal synaptic receptors. Some extrajunctional receptors are sensitive in the range of circulating plasma glutamate levels, suggesting a role for IGluRs in regulating muscle excitability.

The divergence of the IGlu/GABA/Gly/ACh receptor superfamily in protostomes could become a powerful model system for adaptive molecular evolution. Physiologically and pharmacologically, protostome receptors are considerably more diverse than their vertebrate counterparts. Antagonist profiles are only loosely correlated with agonist profiles (e.g., curare-sensitive GABA receptors, bicuculline-sensitive AChRs), and pharmacologically identical receptors may be either excitatory or inhibitory, and permeable to different ions. The assumption that agonist sensitivity reliably connotes discrete, homologous receptor families is contraindicated. Protostome ionotropic receptors are highly diverse and straightforward to assay; they provide an excellent system in which to study and integrate fundamental questions in molecular evolution and adaptation.

Index Entries

Avermectin molecular evolution GABA glycine ibotenate quisqualate chloride channel potassium channel subunit protostome adaptation homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accili E. A. and DiFrancesco D. (1996) Inhibition of the hyperpolarization-activated current (If) of rabbit SA node myocytes by niflumic acid.Pflugers Arch. 431, 757–762.PubMedGoogle Scholar
  2. Adams E., Simkiss K., and Taylor M. (1982) Metal ion metabolism in the moulting crayfish (Austropotamobius pallipes).Comp. Biochem. Physiol. 72, 73–76.Google Scholar
  3. Adelsberger H., von Beckerath N., Franke C., and Dudel J. (1994) A patch-clamp study on a novel gamma-aminobutyric acid-activated chloride channel of crayfish deep extensor abdominal muscle.Neurosci. Lett. 170, 221–224.PubMedGoogle Scholar
  4. Akaike N., Inoue M., and Krishtal O. A. (1986) “Concentration-clamp” study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones.J. Physiol. 379, 171–185.PubMedGoogle Scholar
  5. Albert J., Lingle C. J., Marder E., and O'Neil M. B., (1986) A GABA-activated chloride-conductance not blocked by picrotoxin on spiny lobster neuromuscular preparations.Br. J. Pharm. 87, 771–779.Google Scholar
  6. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. (1990) Basic local alignment search tool.J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  7. Arena J. P. (1994) Expression ofCaenorhabditis elegans mRNA inXenopus oocytes: a model system to study the mechanism of action of avermectins.Parasit. Today 10, 35–37.Google Scholar
  8. Arena J. P., Liu K. K., Paress P. S., and Cully D. F. (1991) Avermectin-sensitive chloride currents induced byCaenorhabditis elegans RNA inXenopus oocytes.Mol. Pharm. 40, 368–374.Google Scholar
  9. Arena J. P., Liu K. K., Paress P. S., Schaeffer J. M., and Cully D. F. (1992) Expression of a glutamate-activated chloride current inXenopus oocytes injected withCaenorhabditis elegans RNA: evidence for modulation by avermectin.Mol. Brain Res. 15, 339–348.PubMedGoogle Scholar
  10. Arenson M. S. and Nistri A. (1982) A novel inhibitory-excitatory response of frog motoneuronsin vitro to glutamate.J. Physiol. 328, 9P.Google Scholar
  11. Arshavsky Y. I., Deliagina T. G., Gamkrelidze G. N., Orlovsky G. N., Panchin Y. V., Popova L. B., and Shupliakov O. V. (1993) Pharmacologically induced elements of the hunting and feeding behavior in the pteropod molluscClione limacina. I. Effects of GABA.J. Neurophysiol. 69, 512–521.PubMedGoogle Scholar
  12. Ascher P., Nowak L., and Kehoe J. S. (1986) Glutamate-activated channels in molluscan and vertebrate neurones, inIon Channels in Neural Membranes (Ritchie J. M., Keynes R. D., and Bolis L., eds.), Liss, New York, pp. 283–295.Google Scholar
  13. Barnard E. A., Darlison M. G., and Seeburg P. (1987) Molecular biology of the GABA-A receptor: the receptor/channel superfamily.Trends Neurosci. 10, 502–509.Google Scholar
  14. Barnes R. D. (1987)Invertebrate Zoology, 5th ed. Harcourt Brace Jovanovich, New York.Google Scholar
  15. Bermudez I., Hawkins C. A., Taylor A. M., and Beadle D. J. (1991) Actions of insecticides on the insect GABA receptor complex.J. Recept. Res. 11, 221–232.PubMedGoogle Scholar
  16. Bidaut M. (1980) Pharmacological dissection of pyloric network of the lobster stomatogastric ganglion using picrotoxin.J. Neurophysiol. 44, 1089–1101.PubMedGoogle Scholar
  17. Bokisch A. J. and Walker R. J. (1986) The action of avermectin (MK 936) on identified central neurones fromHelix and its interaction with acetylcholine and gamma-aminobutyric acid (GABA) responses.Comp. Biochem. Physiol. C 84, 119–125.PubMedGoogle Scholar
  18. Bolker J. A. and Raff R. A. (1996) Developmental genetics and traditional homology.BioEssays 18, 489–494.PubMedGoogle Scholar
  19. Bolshakov V. Y., Gapon S. A., and Magazanik L. G. (1991) Different types of glutamate receptors in isolated and identified neurones of the molluscPlanorbarius corneus.J. Physiol. 439, 15–35.PubMedGoogle Scholar
  20. Bolshakov V. Y., Gapon S. A., and Magazanik L. G. (1992) Transduction mechanism for glutamate-induced potassium current in neurones of the molluscPlanorbarius corneus.J. Physiol. 455, 33–50.PubMedGoogle Scholar
  21. Bolshakov V. Y., Gapon S. A., Katchman A. N., and Magazanik L. G. (1993) Activation of a common potassium channel in molluscan neurones by glutamate, dopamine and muscarinic agonist.J. Physiol. 468, 11–33.PubMedGoogle Scholar
  22. Boore J. L. and Brown W. M. (1994) Mitochondrial genomes and the phylogeny of molluscs.Nautilus 108, 61–78.Google Scholar
  23. Boore J. L., Collins T. M., Stanton D., Daehler L. L., and Brown W. M. (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements.Nature 376, 163–165.PubMedGoogle Scholar
  24. Bormann J. and Clapham D. E. (1985) Gamma-aminobutyric acid receptor channels in adrenal chromaffin cells: a patch-clamp study.Proc. Natl. Acad. Sci. USA 82, 2168–2172.PubMedGoogle Scholar
  25. Bormann J., Hamill O. P., and Sakmann B. (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones.J. Physiol. 385, 243–286.PubMedGoogle Scholar
  26. Burg R. W., Miller B. M., Baker E. E., Birnbaum J., Currie S. A., Hartman R., Kong Y. L., Monaghan R. L., Olson G., Putter I., Tunac J. B., Wallick H., Stapley E. O., Oiwa R., and Omura S. (1979) Avermectins, new family of potent anthelminthic agents: producing organism and fermentation.Antimicrob. Agents. Chemother. 15, 361–367.PubMedGoogle Scholar
  27. Carlyle R. F. (1970a) The action of glutamic acid and some derivatives on isolated supra oral sphincter preparations of the sea anemone.Actinia equina.J. Physiol. 212, 32P-33P.Google Scholar
  28. Carlyle R. F. (1970b) The effects of amino acids and some related substances on isolated preparations of the sea anemoneActinia equina.J. Physiol. 208, 67P-68P.PubMedGoogle Scholar
  29. Carlyle R. F. (1971) The occurrence of some amino acids in, and their release from, isolated supra oral sphincter preparations of the sea anemoneActinia equina.J. Physiol. 215, 44P-45P.PubMedGoogle Scholar
  30. Carlyle R. F. (1974) The occurrence in and actions of amino acids on isolated supra oral sphincter preparations of the sea anemoneActinia equina.J. Physiol. 236, 635–652.PubMedGoogle Scholar
  31. Camien M. N., Sarlet H., Duchateau G., and Florkin M. (1951) Non-protein amino acids in muscle and blood of marine and fresh water crustacea.J. Biol. Chem. 193, 881–885.PubMedGoogle Scholar
  32. Campbell W. C. and Benz G. W. (1984) Ivermectin: a review of efficacy and safety.J. Vet. Pharm. Ther. 7, 1–16.Google Scholar
  33. Carpenter D. O., Swann J. W., and Yarowsky P. J. (1977) Effect of curare on responses to different putative neurotransmitters inAplysia neurons.J. Neurobiol. 8, 119–132.PubMedGoogle Scholar
  34. Cazalets J.-R. and Harris-Warrick R. M. (1989)Soc. Neurosci. Abstracts 15, 998.Google Scholar
  35. Chabala J. C., Mrozik H., Tolman R. L., Eskola P., Lusi A., Peterson L. H., Woods M. F., Fisher M. H., Campbell W. C., Egerton J. R., and Ostlind D. A. (1980) Ivermectin, a new broad-spectrum antiparasitic agent.J. Med. Chem. 23, 1134–1136.PubMedGoogle Scholar
  36. Chenoy-Marchais D. (1982) ACl-conductance activated by hyperpolarization inAplysia neurones.Nature 299, 359–361.PubMedGoogle Scholar
  37. Chiba C. and Saito T. (1994) APB (2-amino-4-phosphonobutyric acid) activates a chloride conductance in ganglion cells isolated from newt retina.Neuroreport 5, 489–492.PubMedGoogle Scholar
  38. Cleland T. A. and Selverston A. I. (1995) Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion.J. Neurosci. 15, 6631–6639.PubMedGoogle Scholar
  39. Cull-Candy S. G. (1976) Two types of extrajunctionall-glutamate receptors in locust muscle fibres.J. Physiol. 255, 449–464.PubMedGoogle Scholar
  40. Cull-Candy S. G. (1978) Glutamate sensitivity and distribution of receptors along normal and denervated locust muscle fibres.J. Physiol. 276, 165–181.PubMedGoogle Scholar
  41. Cull-Candy S. G. and Miledi R. (1981) Junctional and extrajunctional membrane channels activated by GABA in locust muscle fibres.Proc. Roy. Soc. Lond. B 211, 527–535.Google Scholar
  42. Cull-Candy S. G., Donnellan J. F., James R. W., and Lunt G. G. (1976) 2-Amino-4-phosphonobutyric acid as a glutamate antagonist on locust muscle.Nature 262, 408–409.PubMedGoogle Scholar
  43. Cully D. F. and Paress P. S. (1991) Solubilization and characterization of a high affinity ivermectin binding site fromCaenorhabditis elegans.Mol. Pharm. 40, 326–332.Google Scholar
  44. Cully D. F., Vassilatis D. K., Liu K. K., Paress P. S., van der Ploeg L. H. T., Schaeffer J. M., and Arena J. P. (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel fromCaenorhabditis elegans.Nature 371, 707–711.PubMedGoogle Scholar
  45. Cully D. F., Paress P. S., Liu K. K., Schaeffer J. M., and Arena J. P. (1996) Identification of aDrosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin.J. Biol. Chem. 271, 20,187–20,191.Google Scholar
  46. Darlison M. G. (1992) Invertebrate GABA and glutamate receptors: molecular biology reveals predictable structures but some unusual pharmacologies.Trends Neurosci. 15, 469–474.PubMedGoogle Scholar
  47. Darlison M. G., Hutton M. L., and Harvey R. J. (1993) Molluscan ligand-gated ion-channel receptors.Exs 63, 48–64.PubMedGoogle Scholar
  48. Delgado R., Barla R., Latorre R., and Labarca P. (1989)l-glutamate activates excitatory and inhibitory channels inDrosophila larval muscle.FEBS Lett. 243, 337–342.PubMedGoogle Scholar
  49. Dickinson P. S. (1995) The contributions of motor neuronal and muscle modulation to behavioral flexibility in the stomatogastric system.Am. Zool. 35, 548–555.Google Scholar
  50. Dubas F. (1991) Actions of putative amino acid neurotransmitters on the neuropile arborizations of locust flight motoneurones.J. Exp. Biol. 155, 337–356.Google Scholar
  51. Duce I. R. and Scott R. H. (1985) Actions of dihydro-avermectin B1a on insect muscle.Br. J. Pharm. 85, 395–401.Google Scholar
  52. Dudel J. (1977) Aspartate and other inhibitors of excitatory synaptic transmission in crayfish muscle.Pflugers Arch. 369, 7–16.PubMedGoogle Scholar
  53. Dudel J., Franke C., Hatt H., and Usherwood P. N. (1989) Chloride channels gated by extrajunctional glutamate receptors (H-receptors) on locust leg muscle.Brain Res. 481, 215–220.PubMedGoogle Scholar
  54. Eernisse D. J., Albert J. S., and Anderson F. E. (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology.Syst. Biol. 41, 305–330.Google Scholar
  55. Eisen J. S. and Marder E. (1982) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons.J. Neurophysiol. 48, 1392–1415.PubMedGoogle Scholar
  56. Eliasof S. and Werblin F. (1993) Characterization of the glutamate transporter in retinal cones of the tiger salamander.J. Neurosci. 13, 402–411.PubMedGoogle Scholar
  57. Elson R. C. and Selverston A. I. (1995) Slow and fast synaptic inhibition evoked by pattern-generating neurons of the gastric mill network in spiny lobsters.J. Neurophysiol. 74, 1996–2011.PubMedGoogle Scholar
  58. Etter A., Cully D. F., Schaeffer J. M., Liu K. K., and Arena J. P. (1996) An amino acid substitution in the pore region of a glutamate-gated chloride channel enables the coupling of ligand binding to channel gating.J. Biol. Chem. 271, 16,035–16,039.Google Scholar
  59. Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., and Amara S. G. (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel.Nature 375, 599–603.PubMedGoogle Scholar
  60. Field K. G., Olsen G. J., Lane D. J., Giovannoni S. J., Ghiselin M. T., Raff E. C., Pace N. R., and Raff R. A. (1988) Molecular phylogeny of the animal kingdom.Science 239, 748–753.PubMedGoogle Scholar
  61. Fitch W. M. (1970) Distinguishing homologous from analogous proteins.Syst. Zool. 19, 99–113.PubMedGoogle Scholar
  62. Florey E. and Murdock L. L. (1974) The ionic mechanism of action of GABA andl-glutamate on a crustacean striated muscle (vas deferens of the crayfish).Comp. Gen. Pharm. 5, 91–99.Google Scholar
  63. Franciolini F. and Nonner W. (1987) Anion and cation permeability of a chloride channel in rat hippocampal neurons.J. Gen. Physiol. 90, 453–478.PubMedGoogle Scholar
  64. Franciolini F. and Nonner W. (1994a) Anion-cation interactions in the pore of neuronal background chloride channels.J. Gen. Physiol. 104, 711–723.PubMedGoogle Scholar
  65. Franciolini F. and Nonner W. (1994b) A multi-ion permeation mechanism in neuronal background chloride channels.J. Gen. Physiol. 104, 725–746.PubMedGoogle Scholar
  66. Frank E. (1974) The sensitivity to glutamate of denervated muscles of the crayfish.J. Physiol. 242, 371–382.PubMedGoogle Scholar
  67. Franke C., Hatt H., and Dudel J. (1986) The inhibitory chloride channel activated by glutamate as well as GABA.J. Comp. Physiol. A 159, 591–609.Google Scholar
  68. Franke C., Hatt H., and Dudel J. (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle.Neurosci. Lett. 77, 199–204.PubMedGoogle Scholar
  69. Fraser S. P., Djamgoz M. B., Usherwood P. N., O'Brien J., Darlison M. G., and Barnard E. A. (1990) Amino acid receptors from insect muscle: electrophysiological characterization inXenopus oocytes following expression by injection of mRNA.Mol. Brain Res. 8, 331–341.PubMedGoogle Scholar
  70. Friedrich M. and Tautz D. (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods.Nature 376, 165–167.PubMedGoogle Scholar
  71. Fritz L. C., Wang C. C., and Gorio A. (1979) Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance.Proc. Natl. Acad. Sci. USA 76, 2062–2066.PubMedGoogle Scholar
  72. Gerschenfeld H. M. and Lasansky A. (1964) Action of glutamic acid and other naturally occurring amino acids on snail central neurones.Int. J. Neuropharm. 3, 301–314.Google Scholar
  73. Giles D. and Usherwood P. N. (1985a) The effects of putative amino acid neurotransmitters on somata isolated from neurons of the locust central nervous system.Comp. Biochem. Physiol. C 80, 231–236.PubMedGoogle Scholar
  74. Giles D. P. and Usherwood P. N. (1985b) Locust nymphal neurones in culture: a new technique for studying the physiology and pharmacology of insect central neurones.Comp. Biochem. Physiol. C 80, 53–59.PubMedGoogle Scholar
  75. Glantz R. M. and Pfeiffer-Linn C. (1992) NMDA receptors in invertebrates.Comp. Biochem. Physiol. C 103, 243–248.Google Scholar
  76. Gorman A. L. F. and Marmor M. F. (1971) A biphasic potential produced byl-glutamic acid in a giant molluscan neuron.Fed. Proc. 30, 323.Google Scholar
  77. Graham D., Pfeiffer F., and Betz H. (1982) Avermectin B1a inhibits the binding of strychnine to the glycine receptor of rat spinal cord.Neurosci. Lett. 29, 173–176.PubMedGoogle Scholar
  78. Grant G. B. and Dowling J. E. (1995) A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina.J. Neurosci. 15, 3852–3862.PubMedGoogle Scholar
  79. Gration K. A., Clark R. B., and Usherwood P. N. (1979) Three types ofl-glutamate receptor on junctional membrane of locust muscle fibres.Brain Res. 171, 360–364.PubMedGoogle Scholar
  80. Graubard K., Raper J. A., and Hartline D. K. (1983) Graded synaptic transmission between identified spiking neurons.J. Neurophysiol. 50, 508–521.PubMedGoogle Scholar
  81. Gray G. S. and Fitch W. M. (1983) Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene fromStaphylococcus aureus.Mol. Biol. Evol. 1, 57–66.PubMedGoogle Scholar
  82. Grenningloh G., Rienitz A., Schmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D., and Betz H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors.Nature 328, 215–220.PubMedGoogle Scholar
  83. Hall B. K. (1994)Homology: the Hierarchical Basis of Comparative Biology. Academic, New York.Google Scholar
  84. Hamill O. P., Bormann J., and Sakmann B. (1983) Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA.Nature 305, 805–808.PubMedGoogle Scholar
  85. Harris-Warrick R. M., Marder E., Selverston A. I., and Moulins M. (1992)Dynamic Biological Networks: the Stomatogastric Nervous System. MIT Press, Cambridge, MA.Google Scholar
  86. Henry C. D., Leslie J., and Kulovich S. (1991) Circulating free amino acids inAplysia californica.Comp. Biochem. Physiol. A 100, 629–632.PubMedGoogle Scholar
  87. Hill A. V. (1909) The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients.J. Physiol. 39, 361–373.PubMedGoogle Scholar
  88. Hille B. (1992)Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, MA.Google Scholar
  89. Hillis D. M. (1994) Hornology in molecular biology, inHomology: the Hierarchical Basis of Comparative Biology (Hall B. K., ed.), Academic, New York, pp. 339–368.Google Scholar
  90. Hillis D. M. and Moritz C., eds. (1990)Molecular Systematics. Sinauer Associates, Sunderland, MA.Google Scholar
  91. Holden-Dye L. and Walker R. J. (1990) Avermectin and avermectin derviatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells ofAscaris; is this the site of antihelminthic action?Parasitology 2, 265–271.Google Scholar
  92. Holden-Dye L., Hewitt G. M., Wann K. T., Krogsgaard-Larsen P., and Walker R. J. (1988) Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor ofAscaris suum muscle.Pestic. Sci. 24, 231–245.Google Scholar
  93. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.PubMedGoogle Scholar
  94. Houamed K. M., Kuijper J. L., Gilbert T. L., Haldeman B. A., O'Hara P. J., Mulvihill E. R., Almers W., and Hagen F. S. (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain.Science 252, 1318–1321.PubMedGoogle Scholar
  95. Hue B., Pelhate M., and Chanelet J. (1979) Pre- and postsynaptic effects of taurine and GABA in the cockroach central nervous system.Can. J. Neurol. Sci. 6, 243–250.PubMedGoogle Scholar
  96. Ikemoto Y. and Akaike N. (1988) The glutamate-induced chloride current inAplysia neurones lacks pharmacological properties seen for excitatory responses to glutamate.Eur. J. Pharm. 150, 313–318.Google Scholar
  97. Ikemoto Y., Akaike N., and Ono K. (1988) Kinetic analysis of glutamate-induced chloride current inAplysia neurones: a “concentration clamp” study.Eur. J. Pharm. 150, 303–311.Google Scholar
  98. Jackel C., Krenz W.-D., and Nagy F. (1994a) Bicuculline/baclofen-insensitive GABA response in crustacean neurones in culture.J. Exp. Biol. 191, 167–193.PubMedGoogle Scholar
  99. Jackel C., Krenz W.-D., and Nagy F. (1994b) A receptor with GABA-C-like pharmacology in invertebrate neurones in culture.Neuroreport 5, 1097–1101.PubMedGoogle Scholar
  100. Johnson B. R., Peck J. H., and Harris-Warrick R. M. (1995) Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion.J. Neurophysiol. 74, 437–452.PubMedGoogle Scholar
  101. Johnson G. A., Curtis D. R., Davies J., and McCulloch R. M. (1974) Spinal interneurone excitation by conformationally restricted analogues ofl-glutamic acid.Nature 248, 804,805.Google Scholar
  102. Johnson G. A. R., Curtis D. R., de Groat W. C., and Duggan A. W. (1968) Central actions of ibotenic acid and muscimol.Biochem. Pharm. 17, 2488,2489.Google Scholar
  103. Kaneko A. and Tachibana M. (1986) Blocking effects of cobalt and related ions on the gamma-aminobutyric acid-induced current in turtle retinal cones.J. Physiol. 373, 463–479.PubMedGoogle Scholar
  104. Kato M., Oomura Y., Maruhashi J., and Shimizu N. (1983) Chemical characteristics of thel-glutamate receptor on theOnchidium neuron.J. Neurosci. 3, 549–556.PubMedGoogle Scholar
  105. Katz P. S. and Levitan I. B. (1993) Quisqualate and ACPD are agonists for a glutamate-activated current in identifiedAplysia neurons.J. Neurophysiol. 69, 143–150.PubMedGoogle Scholar
  106. Kehoe J. (1972) Three acetylcholine receptors inAplysia neurones.J. Physiol. 225, 115–146.PubMedGoogle Scholar
  107. Kehoe J. (1978) Transformation by concanavalin A of the response of molluscan neurones tol-glutamate.Nature 274, 866–869.PubMedGoogle Scholar
  108. Kehoe J. (1994) Glutamate activates a K+ conductance increase inAplysia neurons that appears to be independent of G proteins.Neuron 13, 691–702.PubMedGoogle Scholar
  109. Kerkut G. A. and Cottrell G. A. (1962) Amino-acids in the blood and nervous system ofHelix aspersa.Comp. Biochem. Physiol. 5, 227–230.PubMedGoogle Scholar
  110. Kerkut G. A., Horn N., and Walker R. J. (1969) Long-lasting synaptic inhibition and its transmitter in the snailHelix aspersa.Comp. Biochem. Physiol. 30, 1061–1074.PubMedGoogle Scholar
  111. King W. M. and Carpenter D. O. (1987) Distinct GABA and glutamate receptors may share a common channel inAplysia neurons.Neurosci. Lett. 82, 343–348.PubMedGoogle Scholar
  112. King W. M. and Carpenter D. O. (1989) Voltageclamp characterization of Cl-conductance gated by GABA andl-glutamate in single neurons ofAplysia. J. Neurophysiol. 61, 892–899.Google Scholar
  113. Kyte J. and Doolittle R. F. (1982) A simple method for displaying the hydropathic character of a protein.J. Mol. Biol. 157, 105–132.PubMedGoogle Scholar
  114. Larsson H. P., Picaud S. A., Werblin F. S., and Lecar H. (1996) Noise analysis of the glutamate-activated current in photoreceptors.Biophys. J. 70, 733–742.PubMedGoogle Scholar
  115. Laughton D. L., Wheeler S. V., Lunt G. G., and Wolstenholme A. J. (1995) The beta-subunit ofCaenorhabditis elegans avermectin receptor responds to glycine and is encoded by chromosome 1.J. Neurochem. 64, 2354–2357.PubMedGoogle Scholar
  116. Lea T. J. and Usherwood P. N. (1973a) Effect of ibotenic acid on chloride permeability of insect muscle-fibres.Comp. Gen. Pharm. 4, 351–363.Google Scholar
  117. Lea T. J. and Usherwood P. N. (1973b) The site of action of ibotenic acid and the identification of two populations of glutamate receptors on insect muscle fibres.Comp. Gen. Pharm. 4, 333–350.Google Scholar
  118. Lee K., Rowe I. C., and Ashford M. L. (1995) NS 1619 activates BKCa channel activity in rat cortical neurones.Eur. J. Pharm. 280, 215–219.Google Scholar
  119. Lerma J. and del Rio R. M. (1992) Chloride transport blockers preventN-methyl-d-aspartate receptor-channel complex activation.Mol. Pharm. 41, 217–222.Google Scholar
  120. Lingle C. (1980) The sensitivity of decapod foregut muscles to acetylcholine and glutamate.J. Comp. Physiol. 138, 187–199.Google Scholar
  121. Lingle C. and Marder E. (1981) A glutamate-activated chloride conductance on a crustacean muscle.Brain Res 212, 481–488.PubMedGoogle Scholar
  122. Macdonald J. F. and Nistri A. (1978) A comparison of the action of glutamate, ibotenate and other related amino acids on feline spinal interneurones.J. Physiol. 275, 449–465.PubMedGoogle Scholar
  123. Macdonald R. L. and Olsen R. W. (1994) GABA-A receptor channels.Ann. Rev. Neurosci. 17, 569–602.PubMedGoogle Scholar
  124. Magazanik L. G., Bolshakov V. Y., and Gapon S. A. (1990) Glutamate receptors in mollusc neurons.J. Evol. Biochem. Physiol. 26, 501–510.Google Scholar
  125. Marder E. and Eisen J. S. (1984) Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters.J. Neurophysiol. 51, 1345–1361.PubMedGoogle Scholar
  126. Marder E. and Paupardin-Tritsch D. (1978) The pharmacological properties of some crustacean neuronal acetylcholine, gamma-aminobutyric acid, andl-glutamate responses.J. Physiol. 280, 213–236.PubMedGoogle Scholar
  127. Maricq A. V., Peterson A. S., Brake A. J., Myers R. M., and Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel.Science 254, 432–437.PubMedGoogle Scholar
  128. Martin R. J. and Pennington A. J. (1989) A patchclamp study of effects of dihydroavermectin onAscaris muscle.Br. J. Pharm. 98, 747–756.Google Scholar
  129. Masu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. (1991) Sequence and expression of a metabotropic glutamate receptor.Nature 349, 760–765.PubMedGoogle Scholar
  130. Mathers D. A. (1985) Spontaneous and GABA-induced single channel currents in cultured murine spinal cord neurons.Can. J. Physiol. Pharmacol. 63, 1228–1233.PubMedGoogle Scholar
  131. Mat Jais A. M., Kerkut G. A., and Walker R. J. (1983) The ionic mechanism associated with the biphasic glutamate response on leech Retzius cells.Comp. Biochem. Physiol. C 74, 425–432.Google Scholar
  132. Mat Jais A. M., Kerkut G. A., and Walker R. J. (1984) The ionic mechanisms associated with the excitatory response of kainate,l-glutamate, quisqualate, ibotenate, AMPA and methyl-tetrahydrofolate on leech Retzius cells.Comp. Biochem. Physiol. C 77, 115–126.PubMedGoogle Scholar
  133. McCreery M. J. and Carpenter D. O. (1984) Modulation of neuronal responses tol-glutamate inAplysia. Cell. Mol. Neurobiol. 47, 91–95.Google Scholar
  134. Mellin T. N., Busch R. D., and Wang C. C. (1983) Postsynaptic inhibition of invertebrate neuromuscular transmission by avermectin B1a.Neuropharmacology 22, 89–96.PubMedGoogle Scholar
  135. Miwa A., Ui M., and Kawai N. (1990) G protein is coupled to presynaptic glutamate and GABA receptors in lobster neuromuscular synapse.J. Neurophysiol. 63, 173–180.PubMedGoogle Scholar
  136. Murdock L. L. (1971) Crayfish vas deferens: contractions in response tol-glutamate and gamma-aminobutyrate.Comp. Gen. Pharm. 2, 93–98.Google Scholar
  137. Murdock L. L. and Chapman G. Y. (1974)l-glutamate in arthropod blood plasma: physiological implications.J. Exp. Biol. 60, 783–794.PubMedGoogle Scholar
  138. Newberry N. R. and Nicoll R. A. (1984) A bicuculline-resistant inhibitory post-synaptic potential in rat hippocmapal pyramidal cells in vitro.J. Physiol. 348, 239–254.PubMedGoogle Scholar
  139. Nicoll R. A. and Alger B. E. (1981) Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells.Science 212, 957–959.PubMedGoogle Scholar
  140. Nistri A. (1981) Excitatory and inhibitory action of ibotenic acid on frog spinal motoneuronesin vitro.Brain Res. 208, 397–408.PubMedGoogle Scholar
  141. Nistri A. and Arenson M. S. (1983) Multiple postsynaptic responses evoked by glutamate onin vitro spinal motoneurones.Adv. Biochem. Psychopharm. 37, 229–236.Google Scholar
  142. Olsen R. W. and Tobin A. J. (1990) Molecular biology of GABA-A receptors.FASEB J. 4, 1469–1480.PubMedGoogle Scholar
  143. Onozuka M., Watanabe K., Nagata K., and Imai S. (1994) Involvement of a Ca2+/calmodulin-dependent protein kinase II-associated mechanism in the induction of an outward potassium current by quisqualate.Brain Res. 650, 336–340.PubMedGoogle Scholar
  144. Oomura Y., Ooyama H., and Sawada M. (1974) Analysis of hyperpolarizations induced by glutamate and acetylcholine onOnchidium neurones.J. Physiol. 243, 321–341.PubMedGoogle Scholar
  145. Ortells M. O. and Lunt G. G. (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors.Trends Neurosci. 18, 121–127.PubMedGoogle Scholar
  146. Ottolia M. and Toro L. (1994) Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids.Biophys. J. 67, 2272–2279.PubMedGoogle Scholar
  147. Oyama Y., Ikemoto Y., Kits K. S., and Akaike N. (1990) GABA affects the glutamate receptor-chloride channel complex in mechanically isolated and internally perfusedAplysia neurons.Eur. J. Pharm. 185, 43–52.Google Scholar
  148. Palmer E., Monaghan D. T., and Cotman C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor.Eur. J. Pharm. 166, 585–587.Google Scholar
  149. Parmentier J. and Case J. (1972) Structure-activity relationships of amino acid receptor sites on an identifiable cell body in the brain of the land snailHelix aspersa.Comp. Biochem. Physiol. A 43, 511–518.Google Scholar
  150. Partridge L. D., Sandquist M., and Shaw T. (1994)Soc. Neurosci. Abstact 20, 1522.Google Scholar
  151. Patterson C. (1982) Morphological characters and homology, inProblems of Phylogenetic Reconstruction (Joysey K. A. and Friday A. E., eds.), Academic, New York, pp. 21–74.Google Scholar
  152. Patterson C. (1990) Metazoan phylogeny: reassessing relationships.Nature 344, 199, 200.PubMedGoogle Scholar
  153. Pearlstein E., Marchand A. R., and Clarac F. (1994) Inhibitory effects ofl-glutamate on central processes of crustacean leg motoneurons.Eur. J. Neurosci. 6, 1445–1452.PubMedGoogle Scholar
  154. Picaud S. A., Larsson H. P., Grant G. B., Lecar H., and Werblin F. S. (1995) Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander.J. Neurophysiol. 74, 1760–1771.PubMedGoogle Scholar
  155. Piggott S. M., Kerkut G. A., and Walker R. J. (1975) Structure-activity studies on glutamate receptor sites of three identifiable neurones in the suboesophageal ganglia ofHelix aspersa.Comp. Biochem. Physiol. C 51, 91–100.PubMedGoogle Scholar
  156. Poronnik, P., Ward M. C., and Cook D. I. (1992) Intracellular Ca2+ release by flufenamic acid and other blockers of the non-selective cation channel.FEBS Lett. 296, 245–248.PubMedGoogle Scholar
  157. Premkumar L. and Chung S. H. (1995) Activation of K+ channels by stimulation of metabotropic glutamate receptors.Neuroreport 6, 765–768.PubMedGoogle Scholar
  158. Quinlan E. M. and Murphy A. D. (1991) Glutamate as a putative neurotransmitter in the buccal central pattern generator ofHelisoma trivolvis.J. Neurophysiol. 66, 1264–1271.PubMedGoogle Scholar
  159. Quinlan E. M., Gregory K., and Murphy A. D. (1995) An identified glutamatergic interneuron patterns feeding motor activity via both excitation and inhibition.J. Neurophysiol. 73, 945–956.PubMedGoogle Scholar
  160. Raff R. A. and Kaufman T. C. (1983)Embryos, Genes, and Evolution: the Developmental-Genetic Basis of Evolutionary Change. Indiana University Press, Bloomington, IN.Google Scholar
  161. Rainnie D. G., Holmes K. H., and Shinnick G. P. (1994) Activation of postsynaptic metabotropic glutamate receptors by trans-ACPD hyperpolarizes neurons of the basolateral amygdala.J. Neurosci. 14, 7208–7220.PubMedGoogle Scholar
  162. Randle J. C. and Renaud L. P. (1987) Actions of gamma-aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro.J. Physiol. 387, 629–647.PubMedGoogle Scholar
  163. Riek R. P., Handschumacher M. D., Sung S. S., Tan M., Glynias M. J., Schluchter M. D., Novotny J., and Graham R. M. (1995) Evolutionary conservation of both the hydrophilic and hydrophobic nature of transmembrane residues.J. Theor. Biol. 172, 245–258.PubMedGoogle Scholar
  164. Roberts C. J. and Walker R. J. (1982) The actions of glutamate and putative glutamate agonists on the central neurons ofLimulus polyphemus.Comp. Biochem. Physiol. C 73, 167–175.Google Scholar
  165. Sakmann B., Hamill O. P., and Bormann J. (1983) Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitter GABA and glycine in mammalian spinal neurons.J. Neur. Trans. 18(Suppl.) 83–95.Google Scholar
  166. Sansom M. S. and Usherwood P. N. (1990) Singlechannel studies of glutamate receptors.Int. Rev. Neurobiol. 32, 51–106.PubMedGoogle Scholar
  167. Sattelle D. B. (1992) Receptors forl-glutamate and GABA in the nervous system of an insect (Periplaneta americana).Comp. Biochem. Physiol. C 103, 429–438.PubMedGoogle Scholar
  168. Sawada M., Hara N., Ito I., and Maeno T. (1984a) Ionic mechanism of a hyperpolarizing glutamate effect on two identified neurons in the buccal ganglion ofAplysia.J. Neurosci. Res. 11, 91–103.PubMedGoogle Scholar
  169. Sawada M., McAdoo D. J., Ichinose M., and Price C. H. (1984c) Influence of glycine and neuron R-14 on contraction of the anterior aorta ofAplysia.Jpn. J. Physiol. 34, 747–767.PubMedGoogle Scholar
  170. Sawada M., Gibson D., and McAdoo D. J. (1984b)l-glutamic acid, a possible neurotransmitter to anterior aorta ofAplysia.J. Neurophysiol. 51, 375–386.PubMedGoogle Scholar
  171. Schaeffer J. M. and Haines H. W. (1989) Avermectin binding inCaenorhabditis elegans. A two-state model for the avermectin binding site.Biochem. Pharm. 38, 2329–2338.PubMedGoogle Scholar
  172. Schmidt J. and Calabrese R. L. (1992) Evidence that acetylcholine is an inhibitory transmitter of heart interneurons in the leech.J. Exp. Biol. 171, 329–347.PubMedGoogle Scholar
  173. Schmieden V., Kuhse J., and Betz H. (1993) Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA.Science 262, 256–258.PubMedGoogle Scholar
  174. Schoepp D., Bockaert J., and Sladeczek F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors.Trends Pharm. Sci. 11, 508–515.PubMedGoogle Scholar
  175. Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A., Seeburg P. H., and Barnard E. A. (1987) Sequence and functional expression of the GABA-A receptor shows a ligand-gated receptor superfamily.Nature 328, 221–227.PubMedGoogle Scholar
  176. Scholtz G. and Richter S. (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca)Zool. J. Linn. Soc. 113, 289–328.Google Scholar
  177. Scott R. H. and Duce I. R. (1987) Pharmacology of GABA receptors on skeletal muscle fibres of the locust (Schistocerca gregaria).Comp. Biochem. Physiol. C 86, 305–311.PubMedGoogle Scholar
  178. Scott R. H. and Duce I. R. (1985) Effects of 22,23-dihydroavermectin B1a on locust (Schistocerca gregaria) muscles may involve several sites of action.Pestic. Sci. 16, 599–604.Google Scholar
  179. Shank R. P. and Freeman A. R. (1975) Cooperative interaction of glutamate and aspartate with receptors in the neuromuscular excitatory membrane in walking limbs of the lobster.J. Neurobiol. 6, 289–303.PubMedGoogle Scholar
  180. Sharp A. A. (1994) Single neuron and small network dynamics explored with the dynamic clamp, PhD. dissertation, Brandeis University.Google Scholar
  181. Shinozaki H. and Ishida M. (1980) Inhibitory action of ibotenic acid on the crayfish neuromuscular junction.Brain Res. 198, 157–165.PubMedGoogle Scholar
  182. Shinozaki H. and Ishida M. (1981) Electrophysiological studies of kainate, quisqualate, and ibotenate action on the crayfish neuromuscular junction.Adv. Biochem. Psychopharm. 27, 327–336.Google Scholar
  183. Sigel E. and Baur R. (1987) Effect of avermectin Bla on chick neuronal gamma-aminobutyrate receptor channels expressed inXenopus oocytes.Mol. Pharm. 32, 749–752.Google Scholar
  184. Smart T. G. and Constanti A. (1986) Studies on the mechanism of action of picrotoxin and other convulsants at the crustacean muscle GABA receptor.Proc. Roy. Soc. Lond B 227, 191–216.Google Scholar
  185. Smart T. G., Houamed K. M., Van Renterghem C., and Constanti A. (1987) mRNA-directed synthesis and insertion of functional amino acid receptors inXenopus laevis oocytes.Biochem. Soc. Trans. 15, 117–122.PubMedGoogle Scholar
  186. Stelzer A. and Wong R. K. (1989) GABA-A responses in hippocampal neurons are potentiated by glutamate.Nature 337, 170–173.PubMedGoogle Scholar
  187. Striedter G. F. and Northcutt R. G. (1991) Biological hierarchies and the concept of homology.Brain Behav. Evol. 38, 177–189.PubMedGoogle Scholar
  188. Swofford D. L. and Olsen G. J. (1990) Phylogeny reconstruction, inMolecular Systematics (Hillis D. M. and Moritz C., eds.), Sinauer, Sunderland, MA, pp. 411–501.Google Scholar
  189. Szczepaniak A. C. and Cottrell G. A. (1973) Biphasic action of glutamic acid and synaptic inhibition in an identified serotonin-containing neurone.Nature New Biol. 241, 62–64.PubMedGoogle Scholar
  190. Takeuchi A. and Takeuchi N. (1964) The effect on crayfish muscle of iontophoretically applied glutamate.J. Physiol. 170, 296–317.PubMedGoogle Scholar
  191. Takeuchi A. and Takeuchi N. (1965) Localized action of gamma-aminobutyric acid on the crayfish muscle.J. Physiol. 177, 225–238.PubMedGoogle Scholar
  192. Takeuchi A. and Takeuchi N. (1967) Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction.J. Physiol. 191, 575–590.PubMedGoogle Scholar
  193. Tazaki K. and Chiba C. (1994) Glutamate, acetylcholine, and gamma-aminobutyric acid as transmitters in the pyloric system of the stomatogastric ganglion of a stomatopod,Squilla oratoria.J. Comp. Physiol. A 175, 487–504.Google Scholar
  194. Turbeville J. M., Pfeifer D. M., Field K. G., and Raff R. A. (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences.Mol. Biol. Evol. 8, 669–686.PubMedGoogle Scholar
  195. Usherwood P. N. R. (1969) Glutamate sensitivity of denervated insect muscle fibres.Nature 223, 411–413.PubMedGoogle Scholar
  196. Usherwood P. N. R. and Grundfest H. (1965) Peripheral inhibition in skeletal muscle of insects.J. Neurophysiol. 28, 497–518.PubMedGoogle Scholar
  197. van Gelder N. M. (1971) Molecular arrangement for physiological action of glutamic acid and gamma-aminobutyric acid.Can. J. Physiol. Pharmacol. 49, 513–519.PubMedGoogle Scholar
  198. van Vreeswijk C., Abbott L. F. and Ermentrout G. B. (1994) When inhibition not excitation synchronizes neural firing.J. Comput. Neurosci 1, 313–321.PubMedGoogle Scholar
  199. Wafford K. A. and Sattelle D. B. (1986) Effects of amino acid neurotransmitter candidates on an identified insect motoneurone.Neurosci. Lett. 63, 135–140.PubMedGoogle Scholar
  200. Wafford K. A. and Sattelle D. B. (1989)l-glutamate receptors on the cell body membrane of an identified insect motor neurone.J. Exp. Biol. 144, 449–462.Google Scholar
  201. Walker R. J. (1976) The action of kainic acid and quisqualic acid on the glutamate receptors of three identifiable neurones from the brain of the snail,Helix aspersa.Comp. Biochem. Physiol. C 55, 61–67.PubMedGoogle Scholar
  202. Walker R. J. and Roberts C. J. (1982) The pharmacology ofLimulus central neurons.Comp. Biochem. Physiol. C 72, 391–401.PubMedGoogle Scholar
  203. Walker R. J., Woodruff G. N., and Kerkut G. A. (1971) The effect of ibotenic acid and muscimol on single neurons of the snail,Helix aspersa.Comp. Gen. Pharm. 2, 168–174.Google Scholar
  204. Walker R. J., James V. A., Roberts C. J., and Kerkut G. A. (1981) Studies on amino acid receptors ofHirudo, Helix, Limulus, andPeriplaneta.Adv. Physiol. Sci. 22, 161–190.Google Scholar
  205. Watanabe K. and Onozuka M. (1994) Glutamate elicits an outward K+ current which is normally suppressed by a Ca2+/calmodulin-dependent protein kinase II.Brain Res. 654, 352–356.PubMedGoogle Scholar
  206. Wiley E. O. (1981)Phylogenetics: the Theory and Practice of Phylogenetic Systematics. Wiley, New York.Google Scholar
  207. Wo Z. G. and Oswald R. E. (1995) Unraveling the modular design of glutamate-gated ion channels.Trends Neurosci. 18, 161–168.PubMedGoogle Scholar
  208. Wright D. J. (1986) Biological activity and mode of action of avermectins, inNeuropharmacology and Pesticide Action (Ford M. G., Lunt G. G., Reay R. C., and Usherwood P. N. R., eds.), Ellis Horwood Ltd., Chichester, UK, pp. 174–202.Google Scholar
  209. Yamamoto C., Yamashita H., and Chujo T. (1976) Inhibitory action of glutamic acid on cerebellar interneurones.Nature 262, 786,787.PubMedGoogle Scholar
  210. Yarowsky P. J. and Carpenter D. O. (1976) Aspartate: distinct receptors onAplysia neuron.Science 192, 807–809.PubMedGoogle Scholar
  211. Yarowsky P. J. and Carpenter D. O. (1978a) Receptors for gamma-aminobutyric acid (GABA) onAplysia neurons.Brain Res. 144, 75–94.PubMedGoogle Scholar
  212. Yarowsky P. J. and Carpenter D. O. (1978b) A comparison of similar ionic responses to gamma-aminobutyric acid and acetylcholine.J. Neurophysiol. 41, 531–541.PubMedGoogle Scholar
  213. Zufall F., Franke C., and Hatt H. (1988) Acetylcholine activates a chloride channel as well as glutamate and GABA: single channel recordings from crayfish stomach and opener muscles.J. Comp. Physiol. A 163, 609–620.Google Scholar
  214. Zufall F., Franke C., and Hatt H. (1989) The insecticide avermectin B1a activates a chloride channel in crayfish muscle membrane.J. Exp. Biol. 142, 191–205.Google Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Thomas A. Cleland
    • 1
  1. 1.Biology Department 0357UCSDLa Jolla

Personalised recommendations