Molecular Neurobiology

, Volume 15, Issue 2, pp 193–222 | Cite as

Nicotinic acetylcholine receptors in health and disease

  • Jon Lindstrom
Original Articles


Nicotinic acetylcholine receptors (AChRs) are a family of acetylcholine-gated cation channels that form the predominant excitatory neurotransmitter receptors on muscles and nerves in the peripheral nervous system. AChRs are also expressed on neurons in lower amounts throughout the central nervous system. AChRs are even being reported on unexpected cell types such as keratinocytes. Structures of these AChRs are being determined with increasing precision, but functions of some orphan subunits are just beginning to be established. Functional roles for postsynaptic AChRs in muscle are well known, but in neurons the post-, peri-, extra-, and presynaptic roles of AChRs are just being revealed. Pathogenic roles of AChRs are being discovered in many diseases involving mechanisms ranging from mutations, to autoimmune responses, to the unknown; involving cell types ranging from muscles, to neurons, to keratinocytes; and involving signs and symptoms ranging from muscle weakness to epilepsy, to neurodegenerative disease, to psychiatric disease, to nicotine addiction. Awareness of AChR involvement in some of these diseases has provoked new interests in development of therapeutic agonists for specific AChR subtypes and the use of expressed cloned AChR subunits as possible immunotherapeutic agents. Highlights of recent developments in these areas will be briefly reviewed.

Index Entries

Nicotinic acetylcholine receptors nicotine myasthenia gravis Alzheimer's disease Parkinson's disease schizophrenia epilepsy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike A., Tamura Y., Yokota T., Shimohama S., and Kimura J. (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity.Brain Res. 644, 181–187.PubMedCrossRefGoogle Scholar
  2. Albuquerque E., Alkondon M., Pereira E., Castro N., Schrattenholz A., Barbosa C., Bonfante-Cabarcas R., Aracava Y., Eisenberg H., and Melicke A. (1996) Properties of neuronal nicotinic acetylcholine receptors, pharmacological characterization and modulation of synaptic function.J. Pharmacol. Exp. Ther. 280, 1117–1136.Google Scholar
  3. Akabas M. and Karlin A. (1995) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the a subunit.Biochemistry 34, 12,596–12,500.CrossRefGoogle Scholar
  4. Akabas M., Kaufmann C., Archdeacon P., and Karlin A. (1994) Identification of acetylcholine receptor channel-liming residues in the entire M2 segment of the a subunit.Neuron 13, 919–927.PubMedCrossRefGoogle Scholar
  5. Akabas M., Stauffer D., Xu M., and Karlin A. (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants.Science 258, 307–310.PubMedCrossRefGoogle Scholar
  6. Anand R., Conroy W., Schoepfer R., Whiting P., and Lindstrom J. (1991) Chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure.J. Biol. Chem. 266, 11,191–11,198.Google Scholar
  7. Anand R., Peng X., Ballesta J., and Lindstrom J. (1993) Pharmacological characterization of αbungarotoxin sensitive AChRs immunoisolated from chick retina, contrasting properties of α7 and α8 subunit-containing subtypes.Mol. Pharmacol. 44, 1046–1050.PubMedGoogle Scholar
  8. Arcavi L., Jacob P., Hellerstein M., and Benowitz N. (1994) Divergent tolerance to metabolic and cardiovascular effects of nicotine in smokers with low and high levels of cigarette consumption.Clin. Pharmacol. Ther. 56, 55–64.PubMedCrossRefGoogle Scholar
  9. Arneric S., Sullivan J., Briggs C., Donnelly-Roberts D., Anderson D., Roszkiewicz J., Hughes M., Cadman E., Adams P., Garvey D., Wasicak J., and Williams M. (1994) (S)-3methyl-5(1-methyl-2pyrrolidinyl) isoxazole (ABT418), a novel cholinergic ligand with cognition-enhancing and anxiolytic activities, 1. in vitro characterization.J. Pharmacol. Exper. Ther. 270, 310–318.Google Scholar
  10. Arnold A. and Trojanowski J. (1996) Recent advances in defining the neuropathy of schizophrenia.Acta Neuropathol. 92, 217–231.PubMedCrossRefGoogle Scholar
  11. Barnard E. (1992) Receptor classes and the transmitter-gated ion channels.TIBS 17, 368–374.PubMedGoogle Scholar
  12. Benowitz N. (1996) Pharmacology of nicotine, addiction and therapeutics.Annu. Rev. Pharmacol. Toxicol. 36, 597–613.PubMedCrossRefGoogle Scholar
  13. Benowitz N., Prochet H., and Jacob P. (1990) Pharmacokinetics, metabolism, and pharmacodynamics of nicotine, inNicotine Psychopharmacology (Wonnocott S., Russell M., and Stolerman I., eds.), Oxford Science Publication, Oxford England, pp. 112–157.Google Scholar
  14. Benwell M., Balfour D., and Anderson J. (1988) Evidence that tobacco smoking increases the density of (−)-3H] nicotine binding sites in human brain.J. Neurochem. 50, 1243–1247.PubMedCrossRefGoogle Scholar
  15. Beroukhim R. and Unwin N. (1995) Three dimensional location of the main immunogenic region of the acetylcholine receptor.Neuron 15, 323–331.PubMedCrossRefGoogle Scholar
  16. Bertrand S., Buisson B., Forster I., and Bertrand D. (1995) Determinnants regulating neuronal nicotinic receptor function, inEffects of Nicotine on Biological Systems II, Advances in Pharmacological Sciences (Clarke P., Quik M., Adlkofer F., and Thurau K., eds.), Birkhauser, Basel, pp. 53–59.Google Scholar
  17. Betz H. (1990) Homology and analogy in transmembrane channel design, lessons from synaptic membrane proteins.Biochemistry 29, 3591–3599.PubMedCrossRefGoogle Scholar
  18. Bickford P. and Wear K. (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats.Brain Res. 705, 235–240.PubMedCrossRefGoogle Scholar
  19. Birtwiselle J. (1996) The role of cigarettes and nicotine in the onset and treatment of ulcerative colitis.Postgrad Med. J. 72, 714–718.Google Scholar
  20. Bjugastad K., Mahnir V., Kein W., Socci D., and Arendash G. (1996) Long term treatment with GTS-21 or nicotine enhances water maze performance in aged rats without affecting the density of nicotinic receptor subtypes in neocortex.Drug Develop. Res. 39, 19–28.CrossRefGoogle Scholar
  21. Blomquist O., Engel J., Bissbrandt H., and Soderpalm B. (1993) The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine.Eur. J. Pharmacol. 249, 207–213.CrossRefGoogle Scholar
  22. Blount P. and Merlie J. (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor.Neuron 3, 349–357.PubMedCrossRefGoogle Scholar
  23. Chan J. and Quik M. (1993) A role for the nicotinic αbungarotoxin receptor in neurite outgrowth in PC12 cells.Neuroscience 56, 441–451.PubMedCrossRefGoogle Scholar
  24. Changeux J. (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor, an allosteric ligand-gated ion channel, inFidia Research Foundation, Neuroscience Award Lectures, vol. 4, 21–168Google Scholar
  25. Clarke P., Schwartz R., Paul S., Pert C., and Pert A. (1985) Nicotinic binding in rat brain, autoradiographic comparison of [3H] acetylcholine, [3H] nicotine, and [125I] αbungarotoxin.J. Neurosci. 5, 1307–1315.PubMedGoogle Scholar
  26. Codignola A., Tarroni P., Cattaneo M., Vincentini L., Clementi F., and Sher E. (1994) Serotonin release and cell proliferation are under control of αbungarotoxin-sensitive nicotinic receptors in small-cell lung carcinoma cell lines.FEBS Lett. 342, 286–290.PubMedCrossRefGoogle Scholar
  27. Coleman R. (1992) Current drug therapy for Parkinson's disease. A review.Drugs Aging 2, 112–124.PubMedGoogle Scholar
  28. Collins A., Burch J., DeFiebre C., and Marks M. (1987) Tolerance and cross tolerance between ethanol and nicotine.Pharmacol. Biochem. Behavior 29, 365–373.CrossRefGoogle Scholar
  29. Collins A. and Marks M. (1996) Are nicotinic receptors activated or inhibited following chronic nicotine treatment?Drug. Develop. Res. 38, 231–242.CrossRefGoogle Scholar
  30. Conroy W. and Berg D. (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions.J. Biol. Chem. 270, 4424–4431.PubMedCrossRefGoogle Scholar
  31. Conroy W., Vernallis A., and Berg D. (1992) The α gene product assembles with multiple acetylcholine receptor subunits to form, distinctive receptor subtypes in brain.Neuron 9, 1–20.CrossRefGoogle Scholar
  32. Conti-Tronconi B., Tzartos S., and Lindstrom J. (1981) Monoclonal antibodies as probes of acetylcholine receptor structure. II, Binding to native receptor.Biochemistry 20, 2181–2191.PubMedCrossRefGoogle Scholar
  33. Cooper E., Courturier S., and Ballivet M. (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor.Nature 350, 235–238.PubMedCrossRefGoogle Scholar
  34. Couturier S., Bertrand D., Matter J., Hernandez M., Bertrand S., Millar N., Valera S., Barkas T., and Ballivet M. (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homomeric channel blocked by αbungarotoxin.Neuron 5, 847–856.PubMedCrossRefGoogle Scholar
  35. Croxen R., Newland C., Beeson D., Oosterhuis H, Chauplannaz G., Vincent A., and Newsome-Davis J. (1997) Mutations in different functional domains of the human muscle acetylcholine receptor α subunit in patients with the slow channel congenital myasthenic syndrome.Human Mol. Genetics 6, 767–774.CrossRefGoogle Scholar
  36. Czajkowski C. and Karlin A. (1995) Structure of the nicotinic receptor acetylcholine binding site.J. Biol. Chem. 270, 3160–3164.PubMedCrossRefGoogle Scholar
  37. Czajkowski C., Kaufmann C., and Karlin A. (1993) Negatively charged amino acid residues in the nicotinic receptor α subunit that contribute to the binding of acetylcholine.Proc. Natl. Acad. Sci. USA 90, 6294–6289.CrossRefGoogle Scholar
  38. Dani J and Heinemann S. (1996) Molecular and cellular aspects of nicotine abuse.Neuron 16, 905–908.PubMedCrossRefGoogle Scholar
  39. Decker M., Brioni J., Sullivan J., Buckley M., Rodek R., Rasziewicz J., Kang, C., Kim D., Giardina W., Wasicak J., Garvey D., Williams M., and Arneric S. (1994) (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxasole (ABT418), a novel cholinergic ligand with cognition-enhancing and anxiolytic activities, II. in vitro characterization.J. Pharmacol. Exper. Ther. 270, 319–328.Google Scholar
  40. Deitrich R., Dunwiddie T., Harris R., and Erwin V. (1989) Mechanism of action of ethanol, initial central nervous system actions.Pharmacol. Rev. 41, 489–537.PubMedGoogle Scholar
  41. Del Toro E., Juiz J., Peng X., Lindstrom J., and Criado M. (1994) Immunocytochemical localization of the a7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system.J. Comp. Neurol. 349, 325–342.CrossRefGoogle Scholar
  42. Dichter M. (1994) Epilepsy, inBiological Basis of Brain Function and Disease (Frazer A., Molinoff P., and Winokur A., eds.), Raven, New York, pp. 406–423.Google Scholar
  43. Donnelly-Roberts D., Xue J., Arneric S., and Sullivan J. (1996) In vitro neuroprotective activator (ChCA) ABT-418.Brain Res. 719, 36–44.PubMedCrossRefGoogle Scholar
  44. Drachman D. (1994) Myasthenia gravis.N. Engl. J. Med. 330, 1797–1810.PubMedCrossRefGoogle Scholar
  45. Drachman D., Okumura S., Adams R., and McIntosh K. (1996) Oral tolerance in myasthenia gravis.Ann. NY Acad. Sci 778, 258–272.PubMedCrossRefGoogle Scholar
  46. Dursun S., Reveley M., Bird R., and Stirton F. (1992) Long lasting improvement of Tourette's syndrome with transdermal nicotine.Lancet 344, 1577.CrossRefGoogle Scholar
  47. Eisile J., Bertrand S., Galzi J., Devillers-Thiery A., Changeux J., and Bertrand D. (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities.Nature 366, 479–483.CrossRefGoogle Scholar
  48. Elgoyhen A., Johnson D., Boulter J., Vetter D., and Heinemann S. (1994) α9, An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.Cell 79, 705–715.PubMedCrossRefGoogle Scholar
  49. Engel A. (1994) The neuromuscular junction, inMyology 2nd ed., vol. 1 (Engel A. and Franzini-Armstrong C., eds.), McGraw Hill, New York, pp. 261–302.Google Scholar
  50. Engel A., Hutchinson D., Nakano S., Murphy L., Griggs R., Gu Y., Hall Z., and Lindstrom J. (1993a) Myasthenic syndromes attributed to mutations affecting the ε subunit of the acetylcholine receptor.Ann. NY Acad. Sci. 681, 496–508.PubMedCrossRefGoogle Scholar
  51. Engel A., Uchitel O., Walls T., Nagel A., Harper C., and Bodensteiner J. (1993b) Newly recognized congenital myasthenic syndrome associated with high conductance and fast closure of the acetylcholine receptor channel.Ann. Neurol. 34, 38–47.PubMedCrossRefGoogle Scholar
  52. Engel A., Ohno K., Bouzat C., Sine S., and Griggs R. (1996a) End plate acetylcholine receptor deficiency due to nonsense mutations in the ε subunit.Ann. Neurol. 40, 810–817.PubMedCrossRefGoogle Scholar
  53. Engel A., Ohno K., Milone M., Wang H., Nakano S., Bouzat C., Pruitt J., Hutchinson D., Brengman J., Bren N., Sieb J., and Sine S. (1996b) New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow channel congenital myasthenic syndrome.Human Mol. Genetics 5, 1217–1227.CrossRefGoogle Scholar
  54. Engel A., Ohno K., Milone M., and Sine S. (1997) Congenital myasthenic syndromes caused by mutations in acetylcholine receptor genes.Neurology 48 (Suppl. 5), S28-S35.Google Scholar
  55. Everitt B. and Robbins T. (1997) Central cholinergic systems and cognition.Annu. Rev. Psychol. 48, 649–684.PubMedCrossRefGoogle Scholar
  56. Evers A. and Steinbach J. (1997) Supersensitive sites in the central nervous system.Anesthesiology 86, 760–762.PubMedCrossRefGoogle Scholar
  57. Flood P., Ramirez-Latorre J., and Role L. (1997) α4β2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but α7-type nicotinic acetylcholine receptors are unaffected.Anesthesiology 86, 859–865.PubMedCrossRefGoogle Scholar
  58. Flores C., Rogers S., Pabreza L., Wolfe B., and Kellar K. (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is upregulated by chronic nicotine treatment.Mol. Pharmacol. 41, 31–37.PubMedGoogle Scholar
  59. Forsayeth J. and Kobrin E. (1997) Formation of oligomers containing the β3 and β4 subunits of the rat nicotinic receptor.J. Neurosci. 17, 1531–1538.PubMedGoogle Scholar
  60. Franks N. and Lieb W. (1994) Molecular and cellular mechanisms of general anesthesia.Nature 367, 607–614.PubMedCrossRefGoogle Scholar
  61. Freedman R., Coon H., Myles-Worsley M., Orr-Urtreger A., and Olincey A. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus.Proc. Natl. Acad. Sci. USA 94, 587–592.PubMedCrossRefGoogle Scholar
  62. Freedman R., Hall M., Adler L., and Leonard S. (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia.Biopsychology 38, 22–33.Google Scholar
  63. Fu D. and Sine S. (1994) Competitive antagonists bridge α-γ subunit interface of the acetylcholine receptor through quaternary aromatic interactions.J. Biol. Chem. 269, 26,152–26,157.Google Scholar
  64. Fu D. and Sine S. (1996) Asymmetric contribution to the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor.J. Biol. Chem. 271, 31,479–31,484.CrossRefGoogle Scholar
  65. Fuchs P. (1996) Synaptic transmission at vertebrate hair cells.Curr. Opin. Neurobiol. 6, 514–519.PubMedCrossRefGoogle Scholar
  66. Fucile S., Napolitano M., and Mattei E. (1997) Cholinergic stimulation of human microcitoma cell line H69.Biochem. Biophys. Res. Commun. 230, 501–504.PubMedCrossRefGoogle Scholar
  67. Furness J. and Costa M. (1987)The Enteric Nervous System. Churchill Livingstone, New York.Google Scholar
  68. Galzi V. and Changeux V. (1994) Neurotransmittergated ion channels as unconventional allosteric proteins.Curr. Opin. Struct. Biol. 4, 554–565.CrossRefGoogle Scholar
  69. Galzi J., Bertrand D., Devillers-Thiery A., Revah F., Bertrand S., and Changeux J. (1991) Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site directed mutagenesis.FEBS Lett. 294, 198–202.PubMedCrossRefGoogle Scholar
  70. Galzi J., Devillers-Thiery A., Hussy N., Bertrand S., Changeux J., and Bertrand D. (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic.Nature 359, 500–505.PubMedCrossRefGoogle Scholar
  71. Galzi J., Revah F., Black D., Goeldner M., Hirth C., and Changeux J. (1990) Identification of a novel amino acid alpha tyrosine 93 within the cholinergic ligand-binding sites of the acetylcholine receptor by photoaffinity labeling.J. Biol. Chem. 265, 10,430–10,437.Google Scholar
  72. Galzi J., Revah F., Bouet F., Menez A., Coeldner M., Hirth C., and Changeux J. (1991) Allosteric transitions of the acetylcholine receptor probed at the amino acid level with a photolabile cholinergic ligand.Proc. Natl. Acad. Sci. USA 88, 5051–5055.PubMedCrossRefGoogle Scholar
  73. Garcia-Guzman M., Sala F., Sala S., Campos-Caro A., Stuhmer W., Gutierrez L., and Criado M. (1995) αbungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells, molecular cloning, functional expression and alternative splicing of the α7 subunit.Eur. J. Neurosci. 7, 647–655.PubMedCrossRefGoogle Scholar
  74. Gattenlohner S., Brabletz T., Schultz A., Marx A., Muller-Hermelink H., and Kirchner T. (1994) Cloning of a cDNA coding for the acetylcholine receptor α subunit from a thymoma associated with myasthenia gravis.Thymus 23, 103–113.PubMedGoogle Scholar
  75. Gerzanich V., Anand R., and Lindstrom J. (1994) Homomers of α8 subunits of nicotinic receptors functionally expressed inXenopus oocytes exhibit similar channel but contrasting binding site properties compared to α7 homomers.Mol. Pharmacol. 45, 212–220.PubMedGoogle Scholar
  76. Gerzanich V., Kuryatov A., Anand R., and Lindstrom J. (1997) “Orphan” α6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor.Mol. Pharmacol. 51, 320–327.PubMedGoogle Scholar
  77. Gomez C., Bhattacharyya B., Charnet P., Day J., Labarca C., Wollmann R., and Lambert E. (1996) A transgenic mouse model of the slow-channel syndrome.Muscle and Nerve 19, 79–87.PubMedCrossRefGoogle Scholar
  78. Gomez C. and Gammack J. (1995) A leucine to phenylalanine substitution in the acetylcholine receptor ion channel in a family with the slow channel syndrome.Neurology 45, 982–985.PubMedGoogle Scholar
  79. Gomez C., Maselli R., Gammack J., Lasalde J., Tamamizu S., Cornblath D., Lehar M., McNamee M., and Kuncl R. (1996) A β subunit mutation in the acetylcholine receptor channel gate causes severe slow channel syndrome.Ann. Neurol. 39, 712–723.PubMedCrossRefGoogle Scholar
  80. Gopalakrishnan M., Buison B., Touma E., Giordano T., Campbell J., Hu J., Donnelly-Roberts D., Arneric S., Bertrand D., and Sullivan J. (1995) Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor.Eur. J. Pharmacol. 290, 237–246.PubMedCrossRefGoogle Scholar
  81. Gopalakrishnan M., Monteggia L., Anderson D., Molinari E., Piattoni-Kaplan M., Donnelly-Roberts D., Arneric S., and Sullivan J. (1996) Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine α4β2 receptor.J. Pharmacol. Exp. Ther. 276, 289–297.PubMedGoogle Scholar
  82. Gotti C., Briscini L., Vergerio C., Oortgiesen M., Balestra B., and Clementi F. (1995) Native nicotinic acetylcholine receptors in human Imr32 neuroblastoma cells, functional, immunological, and pharmacological properties.Eur. J. Neurosci. 7, 2083–2092.PubMedCrossRefGoogle Scholar
  83. Grando S., Horton R., Pereira E., Diethelmokita B., George P., Albuquerque E., and Contifine B. (1995) A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes.J. Invest. Dermatol. 105, 774–781.PubMedCrossRefGoogle Scholar
  84. Grando S., Horton R., Mauro T., Kist D., Lee T., and Dahl M. (1996) Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation.J. Invest. Dermatol. 107, 412–418.PubMedCrossRefGoogle Scholar
  85. Gray R., Rajan A., Radcliffe K., Yakehiro M., and Dani J. (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine.Nature 383, 713–716.PubMedCrossRefGoogle Scholar
  86. Green J., Thomas G., Rhodes J., Evans B., Russell M., Feyerabend C., Fuller G., Newcombe R., and Sandborn W. (1997) Pharmacokinetics of nicotine carbomer enemas, a new treatment for ulcerative colitis.Clin. Pharmacol. Ther. 61, 340–348.PubMedCrossRefGoogle Scholar
  87. Guslandi M. and Tittpbello A. (1996) Pilot trial of nicotine patches as an alternative to corticosteroids.J. Gastroenterol. 31, 627–629.PubMedCrossRefGoogle Scholar
  88. Hara H., Hayashi K., Ohta K., Itoh N., and Ohta M. (1993) Nicotinic acetylcholine receptor mRNAs in myasthenic thymuses.Biochem. Biophys. Res. Commun. 194, 1269–1275.PubMedCrossRefGoogle Scholar
  89. Henningfield J. (1984) Behavioral pharmacology of smoking, inAdvances in Behavioral Pharmacology, vol. 4 (Thompson T., Deros P., and Barrett J., eds.), Academic, Orlando, FL, pp. 131–210.Google Scholar
  90. Henningfield J., Chail L., and Griffith R. (1984) Effects of ethanol on cigarette smoking by volunteers without histories of alcoholism.Psychopharmacology 82, 1–5.PubMedCrossRefGoogle Scholar
  91. Hardy J. (1997) The Alzheimer family of diseases, many etiologies, one pathogenesis?Proc. Natl. Acad. Sci. USA 94, 2095–2097.PubMedCrossRefGoogle Scholar
  92. Horch H. and Sargent P. (1995) Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ganglion.J. Neurosci. 15, 7778–7795.PubMedGoogle Scholar
  93. Horch H. and Sargent P. (1996) Synaptic and extrasynaptic distribution of two distinct populations of nicotinic acetylcholine receptor clusters in the frog cardiac ganglion.J. Neurocytol. 25, 67–77.CrossRefGoogle Scholar
  94. Hsu Y., Amin J., Weiss D., and Wecker L. (1996) Sustained nicotine exposure differentially affects α3β2 and α4β2 neuronal nicotinic receptors expressed inXenopus oocytes.J. Neurochem. 66, 667–675.PubMedCrossRefGoogle Scholar
  95. Hucho F., Oberthur W., and Lottspeich F. (1986) The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits.FEBS Lett. 205, 137–142.PubMedCrossRefGoogle Scholar
  96. Hughes J. and Hatsukami D. (1986) Signs and symptoms of tobacco withdrawal.Arch. Gen. Psych. 43, 289–294.Google Scholar
  97. Kao P. and Karlin A. (1986) Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues.J. Biol. Chem. 261, 8085–8088.PubMedGoogle Scholar
  98. Karlin A. and Akabas M. (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins.Neuron 15, 1231–1244.PubMedCrossRefGoogle Scholar
  99. Karlin A., Holtzman E., Yodh N., Label P., Wall J., and Hainfeld J. (1983) The arrangement of the subunits of the acetylcholine receptor of Torpedo californica.J. Biol. Chem. 258, 6678–6681.PubMedGoogle Scholar
  100. Kennedy L. (1996) Nicotinic therapy for ulcerative colitis.Ann. Pharmacother. 30, 1022–1023.PubMedGoogle Scholar
  101. Keyser K., Britto L., Schoepfer R., Whiting P., Cooper J., Conroy W., Brozozowska-Pretchtl A., Karten H., and Lindstrom J. (1993) Three subtypes of αbungarotoxinsensitive nicotinic acetylcholine receptors are expressed in chick retina.J. Neurosci. 13, 442–454.PubMedGoogle Scholar
  102. Kihara T., Shimohama S., Sawada H., Kimura J., Kume T., Kochiyama H., Maeda T., and Akaike A. (1997) Nicotinic receptor stimulation protects neurons against β amyloid toxicity.Ann. Neurol. 42, 159–163.PubMedCrossRefGoogle Scholar
  103. Koop C. (1988) The health consequences of smoking. Nicotine addiction. A report of the Surgeon General, U.S. Dept. of Health and Human Services.Google Scholar
  104. Kuryatov A., Gerzanich V., Nelson M., Olale F., and Lindstrom J. (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca++ permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors,J. Neurosci, in press.Google Scholar
  105. Lang B., Waterman S., Pinto A., Janes D., Boot J., Vincent A., and Newsome-David J. (1997) The role of autoantibodies in Lambert-Eaton myasthenic syndrome (LEMS).Ann. NY Acad. Sci. IX International Conference on Myasthenia Gravis and Related Disorders, in press.Google Scholar
  106. Lange K., Wells F., Jenner P., and Marsden P. (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical regions in Parkinson's disease.J. Neurochem. 60, 197–203.PubMedCrossRefGoogle Scholar
  107. Lena C. and Changeux J. (1997) Role of Ca++ ions in nicotinic facilitation of GABA release in mouse thalamus.J. Neurosci. 17, 576–586.PubMedGoogle Scholar
  108. Lennon, V., Griesmann G., Sciamanna M., and Wieben E. (1997). Lung carcinoma, cation channel autoimmunity and paraneoplastic myasthenic syndromes.Ann. NY Acad. Sci. IX International Conference on Myasthenia Gravis and Related Disorders, in press.Google Scholar
  109. LeNovere N. and Changeux J. (1995) Molecular evolution of the nicotinic acetylcholine receptor, an example of a multigene family in excitable cells.J. Mol. Evol. 40, 155–172.CrossRefGoogle Scholar
  110. LeNovere N., Zoli M., and Changeux J. (1996) Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain.Eur. J. Neurosci. 8, 2428–2439.CrossRefGoogle Scholar
  111. Leonard S., Adams C., Breese C., Adler L., Bickford P., Byerley W., Coon H., Griffith J., Miller C., Myles-Worsley M., Nagamoto H., Rollins Y., Stevens K., Waldo M., and Freedman R. (1996) Nicotinic receptor function in schizophrenia.Schizophren. Bull. 22, 431–445.Google Scholar
  112. Lindstrom J. (1996) Neuronal nicotinic acetylcholine receptors, inIon Channels, vol. 4 (Toshio N., ed.), Plenum, New York, pp. 377–450.Google Scholar
  113. Lindstrom J., Anand R., Peng X., Gerzanich V., Wang F., and Li Y. (1995) Neuronal nicotinic receptor subtypes, inFunctional Diversity of Interacting Receptors, vol. 757 (Lajtha A. and Abood L., eds.), New York Academy of Science, New York, pp. 100–116.Google Scholar
  114. Lindstrom J., Merlie J., and Yogeeswaran B. (1979) Biochemical properties of acetylcholine receptor subunits fromTorpedo californica.Biochemistry 18, 4465–4470.PubMedCrossRefGoogle Scholar
  115. Lindstrom J., Peng X., Kuryatov A., Lee E., Anand R., Gerzanich V., Wang F., Wells G., and Nelson M. (1997) Molecular and antigenic structure of nicotinic acetylcholine receptors,Ann. NY Acad. Sci. Proceedings of IX International Conference on Myasthenia Gravis and Related Disorders, in press.Google Scholar
  116. Lindstrom J., Shelton G., and Fujii Y. (1988) Myasthenia gravis.Adv. Immunol. 42, 233–284.PubMedGoogle Scholar
  117. Lipton S. and Kater S. (1989) Neurotransmitter regulation of neuronal outgrowth plasticity, and survival.TINS 12, 265–270.PubMedGoogle Scholar
  118. Little H. (1991) Mechanisms that may underlie the behavioral effects of ethanol.Prog. Neurobiol. 36, 171–194.PubMedCrossRefGoogle Scholar
  119. Lloyd G., Davidson L., and Hornykiewicz O. (1975) The neurochemistry of Parkinson's disease, effect of L-DOPA therapy.J. Pharmacol. Exp. Ther. 195, 453–464.PubMedGoogle Scholar
  120. Lloyd G. (1996) Subtype selective nicotinic receptor agonists for the treatment of the motor and nonmotor dysfunctions of Parkinson's disease.Movement. Dis. 11, 25.Google Scholar
  121. Lukas R. (1991) The effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line.J. Neurochem. 56, 1134–1145.PubMedCrossRefGoogle Scholar
  122. Luther M., Schoepfer R., Whiting P., Blatt Y., Montal M., Montal M., and Lindstrom J. (1989) A muscle acetylcholine receptor, is expressed in the human cerebellar medullablastoma cell line TE671.J. Neurosci. 9, 1082–1096.PubMedGoogle Scholar
  123. Ma C., Zhang G., Xiao B., Link J., Olsson T., and Link H. (1995) Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor.J. Neuroimmunol. 58, 51–60.PubMedCrossRefGoogle Scholar
  124. Ma C., Zhang G., Xiao B., Wang Z. Link J., Olsson T., and Link T. (1996) Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-γ-expressing Th1-like cells and upregulation of TGF-β mRNA in mononuclear cells.Ann. NY Acad. Sci. 778, 273–287.PubMedCrossRefGoogle Scholar
  125. Magleby K. (1996) Neuromuscular transmission, inMyology, 2nd ed., vol. 1 (Engel A. and Franzini-Armstrong C., eds.), McGraw Hill, New York, pp. 442–463.Google Scholar
  126. Marks M., Pauly J., Gross D., Deneris E., Hermans-Borgmeyer I., Heinemann S., and Collins A. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment.J. Neurosci. 12, 2765–2784.PubMedGoogle Scholar
  127. Martin M., Czajkowski C., and Karlin A. (1996) The contribution of aspartyl residues in the acetylcholine receptor γ and δ subunits to the binding of agonists and competitive antagonists.J. Biol. Chem. 271, 13,497–13,503.Google Scholar
  128. Martin E., Panickar K., King M., Deyrup M., Hunterm B., Wang G., and Meyer E. (1994) Cytoprotective actions of 2, 4 dimethoxybenzlidene anabaseine in differentiated PC12 cells and septal cholinergic neurons.Drug Develop. Res. 31, 135–141.CrossRefGoogle Scholar
  129. McGehee D. and Role L. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons.Annu. Rev. Physiol. 57, 521–546.PubMedCrossRefGoogle Scholar
  130. Meldrum B. and Garthwaite J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 11, 379–387.PubMedCrossRefGoogle Scholar
  131. Menzaghi F., Whelan K., Risbrough V., Rao T., and Lloyd G. (1997a) Effects of a novel cholinergic ion channel agonist SIB-1765F on locomotor activity in rats.J. Pharmacol. Exp. Ther. 280, 384–392.PubMedGoogle Scholar
  132. Menzaghi F., Whelan K., Risbrough V., Rao T., and Lloyd G. (1997b) Interactions between a novel cholinergic ion channel agonist, SIB-1765F and L-DOPA in the reserpine model of Parkinson's disease in rats.J. Pharmacol. Exp. Ther. 280, 393–401.PubMedGoogle Scholar
  133. Messi M., Renganathan M., Grigorenko E., and Delbono O. (1997) Activation of α7 nicotinic acetylcholine receptor promotes survival of spinal cord motoneurons.FEBS Lett. 411, 32–38.PubMedCrossRefGoogle Scholar
  134. Meyer E., deFiebre C., Hunter B., Simpkins C., Franworth N., and deFiebre N. (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors.Drug. Develop. Res. 31, 127–134.CrossRefGoogle Scholar
  135. Mihovilovic M. and Roses A. (1993) Expression of α3, α5, and β4 neuronal acetylcholine receptor subunit transcripts in normal and myasthenia gravis thymus.J. Immunol. 151, 6517–6524.PubMedGoogle Scholar
  136. Milone, M., Ohno K., and Wang H. (1996) Novel slow channel syndrome due to mutation in the acetylcholine receptor α subunit with increased conductance, nanomolar affinity for acetylcholine, and prolonged open durations of the AChR channel.Ann. Neurol. 40, 956Google Scholar
  137. Morens D., Grandinetti A., Reed D., White L., and Ross G. (1995) Cigarette smoking and protection from Parkinson's disease, false association or etiologic clue.Neurology 45, 1041–1051.PubMedGoogle Scholar
  138. Nagata K., Aistrup G., Huang C., Marszalec W., Song J., Yeh J., and Narahashi T. (1996) Potent modulation of neuronal nicotinic acetylcholine receptor channel by ethanol.Neurosci. Letters 217, 189–193.CrossRefGoogle Scholar
  139. Newhouse P., Potter A., and Lenox E. (1993) The effects of nicotinic agents on human cognition, possible therapeutic applications in Alzheimer's and Parkinson's diseases.Med. Chem. Res. 2, 628–642.Google Scholar
  140. Newsome-Davis J. and Vincent A. (1991) Antibody mediated neurological disease.Curr. Opin. Neurobiol. 1, 430–435.CrossRefGoogle Scholar
  141. Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S., and Numa S. (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α subunit precursor of muscle acetylcholine receptor.Nature 305, 818–823.PubMedCrossRefGoogle Scholar
  142. Ohno K., Hutchinson D., Milone M., Brengman J., Bonzat C., Sine S., and Engel A. (1995) Congenital myasthenia syndrome caused by prolonged acetylcholine receptor channel openings due to a mutations in the M2 domain of the ε subunit.Proc. Natl. Acad. Sci. USA 92, 758–762.PubMedCrossRefGoogle Scholar
  143. Ohno K., Wang H., Milone M., Bren N., Brengman J., Nakano S., Quiram P., Pruitt J., Sine S., and Engel A. (1996) Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor ε subunit.Neuron 17, 157–170.PubMedCrossRefGoogle Scholar
  144. Ohno K., Quiram P., Milone M., Wang H., Harper M., Pruitt J., Brengman J., Pao L., Fischbeck K., Crawford T., Sine S., and Engel A. (1997) Congenital myasthenic syndromes due to heteroallelic nonsense/missence mutations in the acetylcholine receptor ε subunit gene, identification and functional characterization of six new mutations.Human Mol. Genet. 6, 753–766.CrossRefGoogle Scholar
  145. Okamura S., McIntosh K., and Drachman D. (1994) Oral administration of acetylcholine receptor, effects on experimental myasthenia gravis.Ann. Neurol. 36, 704–713.CrossRefGoogle Scholar
  146. Olale F., Gerzanich V., Kuryatov A., Wang F., and Lindstrom J. (1997) Chronic nicotine exposure differentially affects the function of human α3, α4, and α7 neuronal nicotinic receptor subtypes, submitted for publication.Google Scholar
  147. O'Leary M., Filatov G., and White M. (1994) Characterization of d-tubocurarine binding site of Torpedo acetylcholine receptor.Am. J. Physiol. 266, c648-c653.PubMedGoogle Scholar
  148. Orr-Urtreger A., Goldmer F., Patrick, J., and Beadet A. (1996) Generation of mice deficient in the α7 neuronal nicotinic receptor gene by targeted recombination.Neurosci. Soc. Meeting. Abst. 501, 6.Google Scholar
  149. Papke R. (1993) The kinetic properties of neuronal nicotinic receptor genetic basis of functional diversity.Prog. Neurobiol. 41, 509–531.PubMedCrossRefGoogle Scholar
  150. Papke R., deFiebre C., Kem W., and Meyer E. (1994) The subunit specific effects of novel anabasinederived nicotinic agents, inAlzheimer Disease, Therapeutic Strategies (Giacobini E. and Becker R., eds.), Birkhauser, Boston, MA, pp. 206–211.Google Scholar
  151. Pauly J., Marks M., Robinson S., van de Kamp J., and Collins A. (1996) Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing α4 or β2 mRNA levels.J. Pharmacol. Exp. Ther. 278, 361–369.PubMedGoogle Scholar
  152. Pederson S. and Cohen J. (1990) d-tubcurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor.Proc. Natl. Acad. Sci. USA 87, 2785–2789.CrossRefGoogle Scholar
  153. Peng X., Anand R., Whiting P., and Lindstrom J. (1994a) Nicotine-induced upregulation of neuronal nicotinic receptors results from a decrease in the rate of turnover.Mol. Pharmacol. 46, 523–530.PubMedGoogle Scholar
  154. Peng X., Katz M., Gerzanich V., Anand R., and Lindstrom J. (1994b) Human α7 acetylcholine receptor, cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed inXenopus oocytes.Mol. Pharmacol. 45, 546–554.PubMedGoogle Scholar
  155. Peng X., Gerzanich V., Anand R., Wang F., and Lindstrom J. (1997) Chronic nicotine treatment upregulates α3 AChRs and α7 AChRs expressed by the human neuroblastoma cell line SH-SY5Y.Mol. Pharmacol. 51, 776–784.PubMedGoogle Scholar
  156. Perkins K., Sexton J., and Di Marco A. (1996) Acute thermogenic effects of nicotine and alcohol in healthy male and female smokers.Physiol. and Behav. 60, 305–309.CrossRefGoogle Scholar
  157. Perry E., Morris, C., Court J., Cheng A., Fairbairn A., McKeith I., Irving D., Brown A., and Perry R. (1995) Alteration in nicotine binding sites in Parkinson's disease, Lewy Body Dementia and Alzheimer's disease, possible index of early neuropathology.Neuroscience 64, 385–395.PubMedCrossRefGoogle Scholar
  158. Peto R., Lopez A., Boreham J., Thun M., and Heath C. (1992) Mortality from tobacco in developed countries, indirect estimation from national vital statistics.Lancet 389, 1268–1278.CrossRefGoogle Scholar
  159. Picciotto M., Zoll M., Lena C., Bessis A., Lallemand Y., LeNovere M., Vincent P., Pich M., Brulet P., and Changeux J. (1995) Abnormal avoidance learning in mice lacking functional high affinity nicotine receptor in the brain.Nature 374, 65–67.PubMedCrossRefGoogle Scholar
  160. Pich E., Pagluisi S., Tessari M., Talabot-Ayer D., Huiysdujnen R., and Chiamulera C. (1997) Common neural sustates for the addictive properties of nicotine and cocaine.Science 275, 83–86.PubMedCrossRefGoogle Scholar
  161. Potthoff A., Ellison G., and Nelson L. (1983) Ethanol intake increases during continuous administration of amphetamine and nicotine, but not several other drugs.Pharmacol. Biochem. Behav. 18, 489–493.PubMedCrossRefGoogle Scholar
  162. Pugh P. and Berg D. (1994) Neuronal acetylcholine receptors that bind αbungarotoxin mediate neurite retraction in a calcium-dependent manner.J. Neurosci. 14, 889–896.PubMedGoogle Scholar
  163. Quick M. (1995) Growth related role for the nicotinic αbungarotoxin receptor, inEffects of Nicotine on Biological Systems II (Clarke P., Quik M., Adlkofer F., Thurau K., eds.), Kirkhauser, Basel, pp. 145–150.Google Scholar
  164. Raftery M., Hunkapillar M., Strader C., and Hood L. (1980) Acetylcholine receptor, complex of homologous subunits.Science 208, 1454–1457.PubMedCrossRefGoogle Scholar
  165. Ramirez-Latorre J., Yu C., Qu X., Perin F., Karlin A., and Role L. (1996) Functional contributions of α5 subunit to neuronal acetylcholine receptor channels.Nature 380, 347–351.PubMedCrossRefGoogle Scholar
  166. Rathouz M., Vijayaraghavan S., and Berg D. (1995) Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons.J. Biol. Chem. 270, 14,366–14,375.Google Scholar
  167. Reynolds J. and Karlin A. (1978) Molecular weight in detergent solution of acetylcholine receptor fromTorpedo californica.Biochemistry 17, 2035–2038.PubMedCrossRefGoogle Scholar
  168. Role L. and Berg D. (1996) Nicotinic receptors in the development and modulation of CNS synapses.Neuron 16, 1077–1085.PubMedCrossRefGoogle Scholar
  169. Romano S., Corriveau R., Schwarz R., and Berg D. (1997a) Expression of the nicotinic receptor α7 gene in tendon and periosteum during early development.J. Neurochem. 68, 640–648.PubMedCrossRefGoogle Scholar
  170. Romano S., Pugh P., McIntosh J., and Berg D. (1997b) Neuronal-type acetylcholine receptors and regulation of α7 gene expression in vertebrate skeletal muscle.J. Neurobiol. 32, 69–80.PubMedCrossRefGoogle Scholar
  171. Rose J., Levin E., Behm F., Westman E., Stein R., Lane J., and Ripka G. (1995) Combined administration of agonist-antagonist as a method of regulating receptor activation.Ann. NY Acad. Sci. 757, 218–221.PubMedCrossRefGoogle Scholar
  172. Sacaan A., Reid R., Santori E., Adams P., Correa L., Mahaffy L., Bleicher L., Cosford N., Stauderman K., McDonald I., Rao T., and Lloyd G. (1997) Pharmacological characterization of SIB-1765F, a novel cholinergic ion channel agonist.J. Pharmacol. Exp. Ther. 280, 373–383.PubMedGoogle Scholar
  173. Saedi M., Anand R., Conroy W., and Lindstrom J. (1990) Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis.FEBS Lett. 267, 55–59.PubMedCrossRefGoogle Scholar
  174. Sahakian B., Janes G., Levy M., and Warburton D. (1989) The effect of nicotine on attention, information processing, and short term memory in patients with dementia of the Alzheimer type.Brit. J. Psych. 154, 797–800.Google Scholar
  175. Sanberg P., Silver R., Shuttle R., et al. (1997) Nicotine for the treatment of Tourette's syndrome.Pharmacol. Ther. 74, 21–25.PubMedCrossRefGoogle Scholar
  176. Sargent P. (1993) The diversity of neuronal nicotinic acetylcholine receptors.Annu. Rev. Neurosci. 16, 403–443.PubMedCrossRefGoogle Scholar
  177. Sastry R. and Sadavongivad C. (1979) Cholinergic systems in non-nervous tissues.Pharmacol. Rev. 30, 66–132.Google Scholar
  178. Scheffer I., Bhatia K., Lopes-Cendes I., Fish D., Marsden C., Andermann E., Desbiens R., Keene D., Cendes F., Manson J., Constantinou J., McIntosh A., and Berkovic S. (1995) Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder.Brain 118, 61–73.PubMedCrossRefGoogle Scholar
  179. Schluep M., Willcox N., Vincent A., Dhoot G., and Newson-Davis J. (1987) Acetylcholine receptors in human thymic myoid cells in situ, an immunohistological study.Ann. Neurol. 22, 212–222.PubMedCrossRefGoogle Scholar
  180. Schoepfer R., Conroy W., Whiting P., Gore M., and Lindstrom J. (1990) Brain α-bungarotoxin-binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel superfamily.Neuron 5, 35–48.PubMedCrossRefGoogle Scholar
  181. Schuller H. (1995) Mechanisms of nicotine stimulated cell proliferation in normal and neoplastic neuroendocrine lung cells, inEffects of Nicotine on Biological Systems II (Clarke P., Quick M., Adelkofer F., and Thurau K., eds.), Birkhauser Verlag, Basel, pp. 151–158.Google Scholar
  182. Schwartz R. and Kellar K. (1983) Nicotinic cholinergic receptor binding sites in the brain, regulation in vivo.Science 220, 214–216.PubMedCrossRefGoogle Scholar
  183. Seguela P., wadiche J., Dinnelly-Millet K., Dani J., and Patrick J. (1993) Molecular cloning, functional properties, and distribution of rat brain α7, a nicotinic cation channel highly permeable to calcium.J. Neurosci. 13, 596–604.PubMedGoogle Scholar
  184. Sher E. and Clementi F. (1997) Neuronal ion channels in lung cancer cells, role in mitogenesis and autoimmunity,Ann. NY Acad. Sci. IX International Conference on Myasthenia Gravis and Related Disorders, in press.Google Scholar
  185. Shimohama S., Akaike A., and Kimura J. (1996) Nicotine-induced cholinergic receptor-mediated inhibition of nitric oxide formation.Ann. NY Acad. Sci. 777, 356–361.PubMedCrossRefGoogle Scholar
  186. Silver A., Shytle R., Philip M., and Sanberg P. (1995) Transdermal nicotine in Tourette's syndrome, inEffects of Nicotine on Biological Systems II (Clarke P. Quick M., Adelkofer F., Thurau K., eds.), Birkhauser, Basel, pp. 293–299.Google Scholar
  187. Sine S. (1993) Molecular dissection of subunit interfaces in the acetylcholine receptor, identification of residues that determine curare selectivity.Proc. Natl. Acad. Sci. USA 90, 9436–9440.PubMedCrossRefGoogle Scholar
  188. Sine S., Kreienkamp H., Bren N., Maeda R., and Taylor P. (1995) Molecular dissection of subunit interfaces in the acetylcholine receptor, identification of determinants of α-conotoxin M1 selectivity.Neuron 15, 205–211.PubMedCrossRefGoogle Scholar
  189. Sine S., Ohno K., Bouzat C., Auerbach A., Milone M., Pruitt J., and Engel A. (1995) Mutation of the acetylcholine receptors α subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity.Neuron 15, 229–239.PubMedCrossRefGoogle Scholar
  190. Steinlein O., Magnusson A., Stoodt J., Bertrand S., Weiland S., Berkovic S., Nakken K., Propping P., and Bertrand D. (1997) An insertion mutation of the CHRNA 4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy.Human Mol. Genetics 6, 943–947.CrossRefGoogle Scholar
  191. Steinlein O., Mulley J., Propping P., Wallace R., Phillips H., sutherland G., Scheffer I., and Berkovic S. (1995) Amissense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy.Nature Genet. 11, 201–203.PubMedCrossRefGoogle Scholar
  192. Swanson L., Simmons D., Whiting P., and Lindstrom J. (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system.J. Neurosci. 7, 3334–3342.PubMedGoogle Scholar
  193. Tarroni P., Rubboli F., Chini B., Zwatt R., Oortgiesen M., Sher E., and Clementi F. (1992) Neuronal-type nicotinic receptors in human neuroblastoma and small cell carcinoma cell lines.FEBS Lett. 312, 66–70.PubMedCrossRefGoogle Scholar
  194. Thomas G. and Rhodes J. (1995) Relationship between smoking, nicotine, and ulcerative coli-tis, inEffects of Nicotine on Biological Systems II Advances in Pharmacological Sciences (Clarke P., Quick M., Adelkofer F., and Thurau K., eds.), Birkhauser, Boston, pp. 287–291.Google Scholar
  195. Tzartos S., Cung M., Demange P., Loutrari H., Mamalaki A., Marraud M., Papadouli I., Sakarellos C., and Tsikaris V. (1991) The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies.Mol. Neurobiol. 5, 1–29.PubMedCrossRefGoogle Scholar
  196. Tzartos, S., Hochschwender S., Vasquez P., and Lindstrom J. (1987) Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor.J. Neuroimmunol. 15, 185–194.PubMedCrossRefGoogle Scholar
  197. Tzartos S., Seybold M., and Lindstrom J. (1982) Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies.Proc. Natl. Acad. Sci. USA 79, 188–192.PubMedCrossRefGoogle Scholar
  198. Ullian E. and Sargent P. (1995) Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum.J. Neurosci. 15, 7012–7023.PubMedGoogle Scholar
  199. Unwin N. (1993) Nicotinic acetylcholine receptor at 9Å resolution.J. Mol. Biol. 229, 1101–1124.PubMedCrossRefGoogle Scholar
  200. Unwin N. (1995) Acetylcholine receptor channel imaged in the open state.Nature 373, 37–43.PubMedCrossRefGoogle Scholar
  201. Vernalis A., Conroy W., and Berg D. (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes.Neuron 10, 451–464.CrossRefGoogle Scholar
  202. Vijayaraghavan S., Rathouz M., Pugh P., and Berg D. (1992) Nicotinic receptors that bind α bungarotoxin on neurons raise intracellular free Ca++.Neuron 8, 353–362.PubMedCrossRefGoogle Scholar
  203. Vincent A., Lang B., and Newsom-Davis J. (1989) Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder.TINS 12, 496–502.PubMedGoogle Scholar
  204. Vincent A., Newland C., Brueton L., Beeson D., Riemersma S., Huson S., and Newsom-Davis J. (1995) Arthrogryposis multiplex congenita with maternal autoantibodies specific for a fetal antigen.Lancet 346, 24–25.PubMedCrossRefGoogle Scholar
  205. Violet J., Downie D., Nakisa R., Lieb W., and Franks N. (1997) Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics.Anesthesiology 86, 866–874.PubMedCrossRefGoogle Scholar
  206. Wang Z., Hardy S., and Hall Z. (1996) Assembly of the nicotinic acetylcholine receptor.J. Biol. Chem. 271, 27,575–27,584.Google Scholar
  207. Wang F., Gerzanich V., Wells G., Anand R., Peng X., Keyser K., and Lindstrom J. (1996) Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and β4 subunits.J. Biol. Chem. 271, 17,656–17,665.Google Scholar
  208. Wang Z., Huang J., Olsson T., He S., and Link H. (1995) B cell responses to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis.J. Neurol. Sci. 128, 167–174.PubMedCrossRefGoogle Scholar
  209. Wang Z., Link H., Ljungdahl A., Hojeberg B., Link J. He B., Qiao J., Melms A., and Olsson T. (1994) Induction of interferon-γ, interleukin-4, and transforming growth factor-β in rats orally tolerized against experimental autoimmune myasthenia gravis.Cell. Immunol. 157, 353–368.PubMedCrossRefGoogle Scholar
  210. Wang Z., Qiao J., and Link H. (1993a) Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor.J. Neuroimmunol. 44, 209–214.PubMedCrossRefGoogle Scholar
  211. Wang Z., Qiao J., Melms A., and Link H. (1993b) T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis.Cell. Immunol. 152, 394–404.PubMedCrossRefGoogle Scholar
  212. Watson J. and Lewis R. (1995) Ulcerative colitis response to smoking and to nicotine chewing gum in a patient with α1 anti-trypsin deficiency.Res. Med. 89, 635–636.CrossRefGoogle Scholar
  213. Weight F., Peoples R., Wright J., Li C., Aguaya L., Lovinger D., and White G. (1993) Neurotransmiter-gated ion channel as molecular sites of alcohol action, inAlcohol, Cell Membranes and Surgical Transduction in Brain (Alling C., Diamond I., and Lelsie S., eds.), Plenum, New York, pp. 107–122.Google Scholar
  214. Weiland S., Weitzmann V., Villarroel A., Propping P., and Steinlein O. (1996) An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics.FEBS Lett. 398, 91–96.PubMedCrossRefGoogle Scholar
  215. Weiner H. (1997) Oral tolerance for the treatment of autoimmune diseases.Ann. Rev. Med. 48, 341–351.PubMedCrossRefGoogle Scholar
  216. Wenger B., Bryant D., Boyd T., and McKay D. (1997) Evidence for spare nicotinic acetylcholine receptors of a β4 subunit in bovine adrenal chromaffin cells, studies using bromoacetylcholine, epibatidine, cysteine, and mAb35.J. Pharmacol. Exp. Ther. 281, 905–913.PubMedGoogle Scholar
  217. Whitehouse P., Matino A., Marcus K., Zweig R., Singer H., Price D., and Kellar K. (1988) Reduction in acetylcholine and nicotine binding in several degenerative diseases.Arch. Neurol. 45, 722–724.PubMedGoogle Scholar
  218. Whiting P., Cooper J., and Lindstrom J. (1987) Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine reeptors from human brain.J. Neuroimmunol. 16, 205–213.PubMedCrossRefGoogle Scholar
  219. Whiting P. and Lindstrom J. (1988) Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies.J. Neurosci. 8, 3395–3404.PubMedGoogle Scholar
  220. Williamson D., Madans J., Anda R., Kleinman J., Giovino G., and Byers T. (1991) Smoking cessation and severity of weight gain in a national cohort.N. Engl. J. Med. 324, 739–745.PubMedCrossRefGoogle Scholar
  221. Witzemann V., Stein E., Barg B., Konno T., Koenen M., Kues W., Criado M., Hofmann M., and Sakmann B. (1990) Primary structure and functional expression of the α, β, γ, δ, and ε subunits of the acetylcholine receptor from rat muscle.Eur. J. Biochem. 194, 347–448.CrossRefGoogle Scholar
  222. Wonnacott S. (1997) Presynaptic nicotinic ACh receptors.TINS 20, 92–98.PubMedGoogle Scholar
  223. Yu D., Zhang L., Eisele J., Bertrand D., and Changeux J. (1996) Ethanol inhibition of nicotinic acetylcholine type α7 receptors involves the amino-terminal domain of the receptor.Mol. Pharmacol. 50, 1010–1016.PubMedGoogle Scholar
  224. Zhang Z., Coggan J., and Berg D. (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to α bungarotoxin.Neuron 17, 1231–1240.PubMedCrossRefGoogle Scholar
  225. Zhang L., Oz M., Stewart R., Peoples R., and Weight F. (1997) Volatile general anesthetic actions on recombinant nAChα7, 5-HT3 and chimeric nAChα7-5-HT3 receptors expressed inXenopus oocytes.Brit. J. Pharmacol. 120, 353–355.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Jon Lindstrom
    • 1
  1. 1.Department of NeuroscienceMedical School of the University of PennsylvaniaPhiladelphia

Personalised recommendations