Molecular Neurobiology

, Volume 13, Issue 3, pp 257–276 | Cite as

Thyroid parafollicular cells

An accessible model for the study of serotonergic neurons
  • Andrew F. Russo
  • Michael S. Clark
  • Paul L. Durham


Serotonergic neurons play key roles in modulating a wide variety of behavioral and homeostatic processes. However, there is a paucity of good model systems to study these neurons at a molecular level. In this review we will present evidence that cell lines derived from an unexpected source, thyroid parafollicular cells (PF) (also called C cells), fit the criteria for use as models for the study of serotonergic neurons. A strength of PF cell lines over other cell lines is that the parental PF cells have serotonergic properties and a neuronal potential that is consistent with their neural crest origin. Futhermore, PF cells and PF cell lines are capable of expressing the fundamental properties of serotonergic neurons, including: (1) serotonin (5-HT) biosynthesis by tryptophan hydroxylase (TPH), (2) vesicular 5-HT storage and regulated release, (3) expression of a 5-HT autoreceptor, and (4) expression of the 5-HT transporter. In this review, we will focus primarily on the serotonergic and neuronal properties of the rat CA77 PF cell line and the parental rat PF cells. The applicability of CA77 cells for molecular analyses will be described. First, their use for studies on the glucocorticoid regulation of the TPH gene will be discussed. Second, control of the calcitonin/calcitonin gene-related peptide (CT/CGRP) gene will be discussed, with particular emphasis on the application of serotonergic drugs in treating migraine headaches. These examples highlight the versatility of thyroid PF cell lines as a system for studying the control of both serotonin biosynthesis and physiological actions.

Index Entries

Parafollicular cell C cell serotonin CGRP calcitonin sumatriptan dexamethasone neural crest tryptophan hydroxylase transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., and Evans R. M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products.Nature 298, 240–244.PubMedGoogle Scholar
  2. Anderson D. J. (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage.Ann. Rev. Neurosci. 16, 129–158.PubMedGoogle Scholar
  3. Archer T. (1982) Serotonin and fear retention in the rat.J. comp. physiol. Psychol. 96, 491–516.PubMedGoogle Scholar
  4. Austin L. A. and Heath H. (1981) Calcitonin physiology and pathophysiology.New Engl. J. Med. 304, 269–275.PubMedGoogle Scholar
  5. Azmitia E. C. and McEwen B. S. (1974) Adrenalcortical influence on rat brain tryptophan hydroxylase activity.Brain Res. 78, 291–302.PubMedGoogle Scholar
  6. Azmitia E. C. and Whitaker-Azmitia P. M. (1991) Awakening the sleeping giant: anatomy and plasticity of the brain serotonergic system.J. Clin. Psychiatry 52 (12, Suppl.), 4–16.PubMedGoogle Scholar
  7. Azmitia E. C., Liao B., and Chen Y. (1993) Increase of tryptophan hydroxylase enzyme protein by dexamethasone in adrenalectomized rat midbrain.J. Neurosci. 13, 5041–5055.PubMedGoogle Scholar
  8. Baetge G., Pintar J. E., and Gershon M. D. (1990) Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons.Dev. Biol. 141, 353–380.PubMedGoogle Scholar
  9. Baetscher M., Schmidt E., Shimizu A., Leder P., and Fishman M. C. (1991) SV40 T antigen transforms calcitonin cells of the thyroid but not CGRP-containing neurons in transgenic mice.Oncogene 7, 1133–1138.Google Scholar
  10. Ball D. W., Azzoli C. G., Baylin S. B., Chi D., Dou S., Donis-Keller H., Cumaraswamy A., Borges M., and Nelkin B. D. (1993) Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors.Proc. Natl. Acad. Sci. USA 90, 5648–5652.PubMedGoogle Scholar
  11. Ball D. W., Compton D., Nelkin B. D., Baylin S. B., and deBustros A. (1992) Human calcitonin gene regulation by helix-loop-helix recognition sequences.Nucl. Acids Res. 20, 117–123.PubMedGoogle Scholar
  12. Barasch J. M., Mackey H., Tamir H., Nunez E. A., and Gershon M. D. (1987a) Induction of a neural phenotype in a serotonergic endocrine cell derived from the neural crest.J. Neurosci. 7, 2874–2883.PubMedGoogle Scholar
  13. Barasch J. M., Tamir H., Nunez E. A., and Gershon M. D. (1987b) Serotonin-storing secretory granules from thyroid parafollicular cells.J. Neurosci. 7, 4017–4033.PubMedGoogle Scholar
  14. Beato M., Herrlich P., and Schutz G. (1995) Steroid hormone receptors: many actors in search of a plot.Cell 83, 851–857.PubMedGoogle Scholar
  15. Blakely R. D., Berson H. E., Fremeau R. T., Jr., Caron M. G., Peek M. M., Prince H. K., and Bradley C. C. (1991) Cloning and expression of a functional serotonin transporter from rat brain.Nature 354, 66–70.PubMedGoogle Scholar
  16. Blaugrund E., Pham T. D., Tennyson V. M., Lo L., Sommer L., Anderson D. J., and Gershon M. D. (1996) Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers andMASH-1 dependence.Development 122, 309–320.PubMedGoogle Scholar
  17. Blundell J. E. (1984) Serotonin and appetite.Neuropharmacology 23, 1537–1551.PubMedGoogle Scholar
  18. Boess F. G. and Martin I. L. (1994) Molecular biology of 5-HT receptors.Neuropharm. 33, 275–317.Google Scholar
  19. Brain S. D., Williams T. J., Tippins J. R., Morris H. R., and MacIntyre I. (1985) Calcitonin gene-related peptide is a potent vasodilator.Nature 313, 54–56.PubMedGoogle Scholar
  20. Briunvels A. T., Landwehrmeyer B., Moskowitz M. A., and Hoyer D. (1992) Evidence for the presence of 5-HT1B receptor messenger RNA in neurons of the rat trigeminal ganglia.Euro. J. Pharmacol. 227, 357–359.Google Scholar
  21. Brown E. M. (1991) Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers.Physiol. Rev. 71, 371–411.PubMedGoogle Scholar
  22. Buzzi M. G., Carter W. B., Shimizu T., Heath III, H., and Moskowitz, M. A. (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior saggital sinus during electrical stimulation of the trigeminal ganglia.Neuropharmacology 30, 1193–1200.PubMedGoogle Scholar
  23. Carnahan J. F., Anderson D. J., and Patterson P. H. (1991) Evidence that enteric neurons may derive from the sympathoadrenal lineage.Dev. Biol. 148, 552–561.PubMedGoogle Scholar
  24. Carroll B. J. (1982) The dexamethasone suppression test for melancholia.Br. J. Psychiat. 140, 292–304.Google Scholar
  25. Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation.Neuron 9, 583–593.PubMedGoogle Scholar
  26. Chaouloff F. (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems.Brain Res. Rev. 18, 1–32.PubMedGoogle Scholar
  27. Ciment G. and Weston J. A. (1983) Enteric neurogenesis by neural crest-derived branchial arch mesenchymal cells.Nature 305, 424–427.PubMedGoogle Scholar
  28. Ciment G. and Weston J. A. (1985) Segregation of developmental abilities in neural-crest-derived cells: identification of partially restricted intermediate cell types in the branchial arches of avian embryos.Dev. Biol. 111, 73–83.PubMedGoogle Scholar
  29. Clark M. S., Johnson W., and Russo A. F. (1994) Dexamethasone repression of tryptophan hydroxylase mRNA levels in the CA77 cell line.Soc. Neurosci. 20, 289 (abstracts).Google Scholar
  30. Clark M. S., Lanigan T. M., Page N. M., and Russo A. F. (1995a) Induction of a serotonergic and neuronal phenotype in thyroid C cells.J. Neurosci. 15, 6167,6178.PubMedGoogle Scholar
  31. Clark M. S., Lanigan T. M., and Russo A. F. (1995b) Serotonergic neuronal properties in C cell lines.Methods: A Companion to Methods in Enzymol. 7, 253–261.Google Scholar
  32. Copp D. H. (1992) Remembrane: calcitonin: discovery and early development.Endocrinology 131, 1007,1008.PubMedGoogle Scholar
  33. Cote G. J. and Gagel R. F. (1986) Dexamethasone differentially affects the levels of calcitonin and calcitonin gene-related peptide mRNAs as expressed in a human medullary thyroid carcinoma cell line.J. Biol. Chem. 261, 15,524–15,528.Google Scholar
  34. Cremins J. D., Michel J., Farah J. M., and Krause J. E. (1992) Characterization of substance P-like immunoreactivity and tachykinin-encoding mRNAs in rat medullary thyroid carcinoma cell lines.J. Neurochem. 58, 817–825.PubMedGoogle Scholar
  35. DaPrada M. and Pletscher A. (1968) Isolation of 5-hydroxytryptamine organelles of rabbit blood platelets: physiological properties and drug induced changes.Br. J. Pharmacol. 34, 591–597.Google Scholar
  36. Darmon M. C., Grima B., Cash C. D., Maitre M., and Mallet J. (1986) Isolation of a rat pineal gland cDNA clone homologous to tyrosine and phenylalanine hydroxylases.FEBS Lett. 206, 43–46.PubMedGoogle Scholar
  37. Darmon M. C., Guibert B., Leviel V., Ehret M., Maitre M., and Mallet J. (1988) Sequence of two mRNAs encoding active rat tryptophan hydroxylase.J. Neurochem. 51, 312–316.PubMedGoogle Scholar
  38. deBustros A., Baylin S. B., Levine M. A., and Nelkin B. D. (1986) Cyclic AMP and phorbol esters separately induce growth inhibition, calcitonin secretion, and calcitonin gene transcription in cultured human medullary thyroid carcinoma.J. Biol. Chem. 261, 8036–8041.PubMedGoogle Scholar
  39. deBustros A., Lee R. Y., Compton D., Tsong T. Y., Baylin S. B., and Nelkin B. D. (1990) Differential utilization of calcitonin gene regulatory DNA sequences in cultured lines of medullary thyroid carcinoma and small-cell lung carcinoma.Mol. Cell. Biol. 10, 1773–1778.Google Scholar
  40. deBustros A., Ball D. W., Peters R., Compton D., and Nelkin B. D. (1992) Regulation of human calcitonin gene transcription by cyclic AMP.Biochem. Biophys. Res. Comm. 189, 1157–1164.Google Scholar
  41. Deschenes R. J., Lorenz L. J., Haun R. S., Roos B. A., Collier K. J., and Dixon J. E. (1984) Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin.Proc. Natl. Acad. Sci. USA 81, 726–730.PubMedGoogle Scholar
  42. Diamond S. (1994) Head pain: diagnosis and management.Clinical Symp. 46, 1–34.Google Scholar
  43. Doupe A. J., Landis S. C., and Patterson P. H. (1985) Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors, and chromaffin cell plasticity.J. Neurosci. 5, 2119–2142.PubMedGoogle Scholar
  44. Dumas S., Darmon M. C., Delort J., and Mallet J. (1989) Differential control of tryptophan hydroxylase activity in raphe and pineal: evidence for a role of translation efficiency.J. Neurosci. Res. 24, 537–547.PubMedGoogle Scholar
  45. Durbec P. L., Larsson-Blomberg L. B., Schuchardt A., Costantini F., and Pachnis V. (1996a) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neurons.Development 122, 349–358.PubMedGoogle Scholar
  46. Durbec P., Marcos-Gutierrez C. V., Kilkenny C., Grigoriou M., Wartiowaara K., Suvanto P., Smith D., Ponder B., Costantini F., Saarma M., Sariola H., and Pachnis V. (1996b) GDNF signalling through the Ret receptor tyrosine kinase.Nature 381, 789–793.PubMedGoogle Scholar
  47. Edery P., Lyonnete S., Mulligan L. M., Pelet A., Dow E., Abel L., Holder S., Nihoul-Fekete C., Ponder B. A. J., and Munnich A. (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease.Nature 367, 378–380.PubMedGoogle Scholar
  48. Edvinsson L. and Goadsby P. J. (1994) Neuropeptides in migraine and cluster headache.Cephalagia 14, 320–327.Google Scholar
  49. Gal E., Heater R., and Millard S. (1968) Studies on the metabolism of 5-hydroxytryptamine (serotonin): hydroxylation and amines in cold-stressed reserpinized rats.Proc. Soc. Exp. Biol. Med. 128, 412–415.PubMedGoogle Scholar
  50. Gilliland G., Perrin S., Blanchard K., and Bunn H. F. (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction.Proc. Natl. Acad. Sci. USA 87, 2725–2729.PubMedGoogle Scholar
  51. German M. S., Wang J., Chadwick R. B., and Rutter W. (1992) Synergistic activation of the insulin gene by a Lim-homeodomain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex.Genes Dev. 6, 2165–2176.PubMedGoogle Scholar
  52. Gershon M. D. and Tamir H. (1984) Serotonectin and the family of proteins that bind serotonin.Biochem. Pharmacol 33, 3115–3118.PubMedGoogle Scholar
  53. Gershon M. D., Chalazonitis A., and Rothman T. P. (1993) From neural crest to bowel: development of the enteric nervous system.J. Neurobiol. 24, 199–214.PubMedGoogle Scholar
  54. Gershon M. D., Kirchgessner A. L., and Wade P. R. (1994) Functional anatomy of the enteric nervous system, inPhysiology of the Gastrointestinal Tract. 3rd vol. 1 (Johnson L. R., Alpers D. H., Johnson E. D., and Walsh J. H., eds.), New York: Raven, pp. 381–422.Google Scholar
  55. Goadsby P. J., Edvinsson L., and Ekman R. (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system.Ann. Neurol. 23, 193–196.PubMedGoogle Scholar
  56. Goadsby P. J. and Edvinsson L. (1991) Sumatriptan reverses the changes in calcitonin gene-related peptide seen in the headache phase of migraine.Cephalgia 11(Suppl. 11), 3,4.Google Scholar
  57. Goadsby P. J. and Edvinsson L. (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats.Ann. Neurol. 33, 48–56.PubMedGoogle Scholar
  58. Goretzki P. E., Wahl R. A., Becker R., Koller C., Branscheid D., Grussendorf M., and Roeher H. D. (1987) Nerve growth factor (NGF) sensitizes human medullary thyroid carcinoma (hMTC) cells for cytostatic therapy in vitro.Surgery 102, 1035–1042.PubMedGoogle Scholar
  59. Guillemot F. and Joyner A. L. (1993) Dynamic expression of the murineAchaete-scute homologue MASH-1 in the developing nervous system.Mech. Devel. 42, 171–185.Google Scholar
  60. Guillemot F., Lo L., Johnson J., Auerbach A., Anderson D. J., and Joyner A. (1993) Mammalian Achaete-scute homologue-1 is required for the early development of olfactory and autonomic neurons.Cell 75, 1–20.Google Scholar
  61. Henley W. N. and Nielson D. A. (1994) Measurement of tryptophan hydroxylase (TPH) mRNA by quantitative RT-PCR.Soc. Neurosci. 20, 288(abstracts).Google Scholar
  62. Hofstra R. M. W., Landsvater R. M., Ceccherini I., Stulp R. P., Stelwagen T., Luo Y., Pasini B., Hoppener J. W. M., van Amstel H. K. P., Romeo G., Lips C. J. M., and Buys C. H. C. M. (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma.Nature 367, 375,376.PubMedGoogle Scholar
  63. Ito K. and Sieber-Blum M. (1991) In vitro clonal analysis of quail cardiac neural crest development.Dev. Biol. 148, 95–106.PubMedGoogle Scholar
  64. Ito K. and Sieber-Blum M. (1993) Pluripotent and developmentally restricted neural-crest-derived cells in posterior visceral arches.Dev. Biol. 156, 191–200.PubMedGoogle Scholar
  65. Jacobs B. L. and Azmitia E. C. (1992) Structure and function of the brain serotonin system.Physiol. Rev. 72, 165–229.PubMedGoogle Scholar
  66. Jacobs-Cohen R. J., Tamir H., and Gershon M. D. (1994) Expression of a neuronal phenotype by neural crest-derived paraneurons (parafollicular cells) is antagonized by thyroid hormone (triiodothyronine; T3).Soc. Neurosci. 20, 654(abstracts).Google Scholar
  67. Jing S., Wen D., Yu Y., Holst P. L., Luo Y., Fang M., Tamir R., Antonio L., Hu Z., Cupples R., Louis J., Hu S., Altrock B. W., and Fox G. M. (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF.Cell 85, 1113–1124.PubMedGoogle Scholar
  68. Johnson J. E., Birren S. J., and Anderson D. J. (1990) Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors.Nature 346, 858–861.PubMedGoogle Scholar
  69. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S., Heyman R. A., Rose, D. W., Glass C. K., and Rosenfeld M. G. (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors.Cell 85, 403–414.PubMedGoogle Scholar
  70. Lanigan T. L., Tverberg L. A., and Russo A. F. (1993) Retinoic acid repression of cell-specific helix-loop-helix-octamer activation of the calcitonin/calcitonin gene-related peptide enhancer.Mol. Cell. Biol. 13, 6079–6088.PubMedGoogle Scholar
  71. LeDouarin N., Fontaine J., and Le Lièvre C. (1974) New studies on the neural crest origin of the avian ultimobranchial glandular cells-interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors.Histochemistry 38, 297–305.Google Scholar
  72. LeDouarin N. M. (1982)The Neural Crest. Cambridge University Press, Cambridge.Google Scholar
  73. Lendahl U. and McKay R. D. G. (1990) The use of cell lines in neurobiology.Trends Neurosci. 13, 132–137.PubMedGoogle Scholar
  74. Leong S. S., Horoszewicz J. S., Shimaoka K., Friedman M., Kawinski E., Song M. J., Zeigel R., Chu T. M., Baylin S. B., and Mirand E. A. (1981) A new cell line for the study of human medullary thyroid carcinoma, inAdvances in Thyroid Neoplasia (Andreoli M., Manaco F., and Robbins J., eds.), Field Educational Italia, Rome, pp. 95–108.Google Scholar
  75. Levi-Montalcini R. (1982) Developmental neurobiology and the natural history of nerve growth factor.Ann. Rev. Neurosci. 5, 341–362.PubMedGoogle Scholar
  76. Lindh B. and Hokfelt T. (1990) Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system.Prog. Brain Res. 84, 175–191.PubMedGoogle Scholar
  77. Lindsay R. M. and Harmar A. J. (1989) Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons.Nature 337, 362–364.PubMedGoogle Scholar
  78. Lo L., Johnson J. E., Wuenschell C. W., Saito T., and Anderson D. J. (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells.Genes Dev. 5, 1524–1537.PubMedGoogle Scholar
  79. Marshall I. (1992) Mechanism of vascular relaxation by the calcitonin gene-related peptide.Ann. New York Acad. Sci. 657, 204–215.Google Scholar
  80. McCulloch J., Uddman R., Kingman T. A., and Edvinsson L. (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation.Proc. Natl. Acad. Sci. USA 83, 5731–5735.PubMedGoogle Scholar
  81. McDermott M. T. and Kidd G. S. (1987) The role of calcitonin in the development and treatment of osteoporosis.Endo. Rev. 8, 377–390.Google Scholar
  82. McEwen B. S. (1987) Glucocorticoid-biogenic amine interactions in relation to mood and behavior.Biochem. Pharm. 36, 1755–1763.PubMedGoogle Scholar
  83. Monia Y. T., Peleg S., and Gagel R. F. (1995) Cell type-specific regulation of transcription by cyclic adenosine 3′,5′-monophosphate-responsive elements within the calcitonin promoter.Mol. Endocrinology 9, 784–793.Google Scholar
  84. Moore M. W., Klein R. D., Farinas I., Sauer H., Armanini M., Phillips H., Reichardt L. F., Ryan A. M., Carver-Moore K., and Rosenthal A. (1996) Renal and neuronal abnormalities in mice lacking GDNF.Nature 382, 76–79.PubMedGoogle Scholar
  85. Mulligan L. M., Eng C., Healey C. S., Clayton D., Kwok J. B. J., Gardner E., Ponder M. A., Frilling A., Jackson C. E., Lehnert H., Neumann H. P. H., Thibodeau S. N., and Ponder B. A. J. (1994) Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC.Nature Genet. 6, 70–74.PubMedGoogle Scholar
  86. Muszynski M., Birnbaum R. S., and Roos B. A. (1983) Glucocorticoids stimulate the production of preprocalcitonin-derived secretory peptides by a rat medullary thyroid carcinoma cell line.J. Biol. Chem. 258, 11,678–11,683.Google Scholar
  87. Nakagawa T., Mabry M., de Bustros A. D., Ihle J. N., Nelkin B. D., and Baylin S. B. (1987) Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells.Proc. Natl. Acad. Sci. USA 84, 5923–5927.PubMedGoogle Scholar
  88. Naveh-Many T. and Silver J. (1988) Regulation of calcitonin gene transcription by vitamin D metabolites in vivo in the rat.J. Clin. Invest. 81, 1–14.Google Scholar
  89. Neale R. F., Fallon S. L., Boyar W. C., Wasley J. W. F., Martin L. L., Stone G. A., Glaeser B. S., Sinton C. M., and Williams M. (1987) Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-1B agonist.Euro. J. Pharmacol. 136, 1–9.Google Scholar
  90. Nelkin B. D., Chen K. Y., de Bustros A., Roos B. A., and Baylin S. B. (1989) Changes in calcitonin gene-related peptide RNA processing during growth of a human medullary thyroid carcinoma cell line.Cancer Res. 49, 6949–6952.PubMedGoogle Scholar
  91. Nishiyama I. and Fujii T. (1992) Laminin-induced process outgrowth from isolated fetal rat PF cells.Exp. Cell Res. 198, 214–220.PubMedGoogle Scholar
  92. Nunez E. A. and Gershon M. D. (1972) Synthesis and storage of serotonin by parafollicular (C) cells of the thyroid gland of active, prehibernating and hibernating bats.Endocrinology 90, 1008–1024.PubMedGoogle Scholar
  93. Owens M. J. and Numeroff C. B. (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter.Clin. Chem. 40, 288–295.PubMedGoogle Scholar
  94. Payette R. F., Bennett G. S., and Gershon M. D. (1984) Neurofilament expression in vagal neural crest-derived precursors of enteric neurons.Dev. Biol. 105, 273–287.PubMedGoogle Scholar
  95. Peleg S., Abruzzese R. V., Cote G. J., and Gagel R. F. (1990) Transcription of the human calcitonin gene is mediated by a C cell-specific enhancer containing E-box-like elements.Mol. Endocrinol. 4, 1750–1757.PubMedGoogle Scholar
  96. Peleg S., Abruzzese R. V., Cooper C. W., and Gagel R. F. (1993) Down regulation of calcitonin gene transcription by vitamin D requires two widely separated enhancer sequences.Mol. Endocrinol. 11, 1750–1757.Google Scholar
  97. Peroutka S. J. (1995) 5-HT receptors: past, present, future.Trends Neurosci. 18, 68,69.PubMedGoogle Scholar
  98. Pichel J. G., Shen L., Sheng H. Z., Granholm A., Drago J., Grinberg A., Lee E. J., Huang S. P., Saarma M., Hoffer B. J., Sariola H., and Westphal H. (1996) Defects in enteric innervation and kidney development in mice lacking GDNF.Nature 382, 73–76.PubMedGoogle Scholar
  99. Polak J. M., Pearse A. G. E., Le Lièvre C., Fontaine J., and LeDouarin N. M. (1974) Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells.Histochemistry 40, 209–214.PubMedGoogle Scholar
  100. Preibisz J. J. (1993) Calcitonin gene-related peptide and regulation of human cardiovascular homeostasis.Am. J. Hypertens. 6, 434–450.PubMedGoogle Scholar
  101. Rebeck G. W., Maynard K. I., Hyman B. T., and Moskowitz M. A. (1994) Selective 5-HT1Dα serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development.Proc. Natl. Acad. Sci. USA 91, 3666–3669.PubMedGoogle Scholar
  102. Romeo G., Ronchetto P., Luo Y., Barone V., Sei M., Ceccherini I., Pasini B., Bocclardl R., Lerone M., Kaarlalnen H., and Martucciello G. (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease.Nature 367, 377,378.PubMedGoogle Scholar
  103. Rosenfeld M. G., Amara S. G., Roos B. A., Ong E. S., and Evans R. M. (1981) Altered expression of the calcitonin gene associated with RNA polymorphism.Nature 290, 63–65.PubMedGoogle Scholar
  104. Rosenfeld M. G., Mermod J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W., and Evans R. M. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Nature 304, 129–135.PubMedGoogle Scholar
  105. Russo A. F., Nelson C., Roos B. A., and Rosenfeld M. G. (1988) Differential regulation of the coexpressed calcitonin/α-CGRP and β-CGRP neuroendocrine genes.J. Biol. Chem. 263, 5–8.PubMedGoogle Scholar
  106. Russo A. F., Lanigan T. M., and Sullivan B. E. (1992) Neuronal properties of a thyroid C-cell line: repression by dexamethasone and retinoic acid.Mol. Endocrinol. 6, 207–218.PubMedGoogle Scholar
  107. Russo A. F. and Green S. (1995) Editorial: neuronal cell lines.Methods: A Companion to Methods in Enzymol. 7, 219–221.Google Scholar
  108. Russo A. F. and Lanigan T. M. (1996) Neuronal properties of thyroid C-cell tumor lines, inGenetic Mechanisms in Multiple Endocrine Neoplasia Type 2 (Nelkin B. D., ed.), Landes, Austin, TX, pp. 137–161.Google Scholar
  109. Sanchez M. P., Silos-Santiago I., Frisen J., He B., Lira S. A., and Barbacid M. (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF.Nature 382, 70–73.PubMedGoogle Scholar
  110. Santoro M., Rosati R., Grieco M., Berlingieri M. T., D’Amato G. L., Franciscis V., and Fusco A. (1990) The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas.Oncogene,5, 1595–1598.PubMedGoogle Scholar
  111. Santoro M., Carlomagno F., Romano A., Bottaro D. P., Dathan N. A., Grieco M., Fusco A., Vecchio G., Matoskova B., Kraus M. H., and DiFiore P. P. (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B.Science 267, 381–383.PubMedGoogle Scholar
  112. Satel S. L. (1990) Mental status changes in children receiving glucocorticoids.Clin. Ped. 29, 382–388.Google Scholar
  113. Schoeffter P. and Hoyer D. (1989) How selective is GR43175? Interactions with functional 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors.Naunyn-Schmiedeberg’s Arch. Pharmacol. 340, 135–138.Google Scholar
  114. Schuchardt A., D’Agati V., Larsson-Blomberg L., Costantini F., and Pachnis V. (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret.Nature 367, 360–383.Google Scholar
  115. Siebert P. D. and Larrick J. W. (1992) Competitive PCR.Nature 359, 558.Google Scholar
  116. Sikri K. L., Varndell I. M., Hamid Q. A., Wilson B. S., Kameya T., Ponder B. A. J., Lloyd R. V., Bloom S. R., and Polak J. M. (1985) Medullary carcinoma of the thyroid.Cancer 56, 2481–2491.PubMedGoogle Scholar
  117. Stolarsky-Fredman L., Leff S. E., Klein E. S., Crenshaw E. B. III, Yeakley J., and Rosenfeld M. G. (1990) A tissue-specific enhancer in the rat-calcitonin/CGRP gene is active in both neural and endocrine cell types.Mol. Endocrinol. 4, 497–504.PubMedGoogle Scholar
  118. Struhl K. (1991) Mechanisms for diversity in gene expression patterns.Neuron 7, 177–181.PubMedGoogle Scholar
  119. Supowit S. C., Christensen M. D., Westlund K. N., Hallman D. M., and DiPette D. J. (1995) Dexamethasone and activators of the protein kinase A and C signal transduction regulate neuronal calcitonin gene-related peptide expression and release.Brain Res. 686, 77–86.PubMedGoogle Scholar
  120. Tamir H., Liu K., Payette R. F., Hsiung S., Adlersberg M., Nunez E. A., and Gershon M. D. (1989) Human medullary thyroid carcinoma: characterization of the serotonergic and neuronal properties of a neuroectodermally derived cell line.J. Neurosci. 9, 1199–1212.PubMedGoogle Scholar
  121. Tamir H., Liu K., Hsiung S., Adlersberg M., Nunez E., and Gershon M. D. (1990) Multiple signals leading to the secretion of 5-hydroxytryptamine by MTC cells, a neuroectodermally derived cell line.J. Neurosci. 10, 3743–3753.PubMedGoogle Scholar
  122. Tamir H., Hsiung S., Yu P., Liu K., Adlersberg M., Nunez E., and Gershon M. D. (1992) Serotonergic signalling between thyroid cells: protein kinase C and 5-HT2 receptors in the secretion and action of serotonin.Synapse 12, 155–168.PubMedGoogle Scholar
  123. Treanor J. J. S., Goodman L., de Sauvage F., Stone D. M., Poulsen K. T., Beck C. D., Gray C., Armanini M. P., Pollock R. A., Hefti F., Phillips H. S., Goddard A., Moore M. W., Buj-Bello A., Davies A. M., Asai N., Takahashi M., Vandlen R., Henderson C. E., and Rosenthal A. (1996) Characterization of a multicomponent receptor for GDNF.Nature 382, 80–83.PubMedGoogle Scholar
  124. Trupp M., Arenas E., Fainzilber M., Nilsson A., Sieber B., Grigoriou M., Milkenny C., Salazar-Grueso E., Pachnis V., Arumae U., Sariola H., Saarma M., and Ibanez C. F. (1996) Functional receptor for GDNF encoded by the c-ret protooncogene.Nature 381, 785–789.PubMedGoogle Scholar
  125. Tverberg L. A. and Russo A. F. (1992) Cell-specific glucocorticoid repression of calcitonin/calcitonin gene-related peptide transcription.J. Biol. Chem. 267, 17,567–17,573.Google Scholar
  126. Tverberg L. A. and Russo A. F. (1993) Regulation of the calcitonin/calcitonin gene-related peptide gene by cell-specific synergy between helix-loop-helix and octamer-binding transcription factors.J. Biol. Chem. 268, 15,965–15,973.Google Scholar
  127. Unsicker K., Drisch B., Otten J., and Thoenen H. (1978) Nerve growth factor-induced fiber out-growth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids.Proc. Natl. Acad. Sci. USA 75, 3498–3502.PubMedGoogle Scholar
  128. VanNoorden S., Polak J. M., and Pearse A. G. E. (1977) Single cellular origin of somatostatin and calcitonin in the rat thyroid gland.Histochemistry 53, 243–247.Google Scholar
  129. Watson A. and Latchman D. (1995) The cyclic AMP response element in the calcitonin/calcitonin gene-related peptide gene promoter is necessary but not sufficient for its activation by nerve growth factor.J. Biol. Chem. 270, 9655–9660.PubMedGoogle Scholar
  130. White L. A., Eaton M. J., Castro M. C., Klose K. J., Globus M. Y.-T., Shaw G., and Whittemore S. R. (1994) Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons.J. Neurosci. 14, 6744–6753.PubMedGoogle Scholar
  131. Wiedenmann B., Franke W. W., Kuhn C., Mall R., and Gould V. E. (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms.Proc. Natl. Acad. Sci. USA 83, 3500–3504.PubMedGoogle Scholar
  132. Yoon S. O. and Chikaraishi D. M. (1992) Tissue-specific transcription of the rat tyrosine hydroxylase gene requires synergy between an AP-1 motif and an overlapping E box-containing dyad.Neuron 9, 55–67.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Andrew F. Russo
    • 1
    • 2
  • Michael S. Clark
    • 2
  • Paul L. Durham
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of IowaIowa City
  2. 2.Molecular Biology ProgramUniversity of IowaIowa City

Personalised recommendations