Molecular Neurobiology

, Volume 14, Issue 1–2, pp 67–116 | Cite as

The cellular and molecular basis of peripheral nerve regeneration

  • Susan Y. Fu
  • Tessa Gordon


Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such asN-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.

Index Entries

Nerve regeneration axotomy neuronal death Schwann cells basal lamina macrophages growth-associated proteins neuropoietic cytokines neurotrophic factors cell adhesion molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson A., Barker P. A., Alderson R. F., Miller F. D., and Murphy R. A. (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF.Neuron 7, 265–275.PubMedCrossRefGoogle Scholar
  2. Acheson A., Conover J. C., Fandl J. P., Dechiara T. M., Russell M., Thadani A., Squinto S. P., Yancopoulos G. D., and Lindsay R. M. (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death.Nature 374, 450–452.PubMedCrossRefGoogle Scholar
  3. Adler R., Landa K. B., Manthorpe M., and Varon S. (1979) Cholinergic neurotrophic factors: intraocular distribution of trophic activity for ciliary neurons.Science 204, 1434–1436.PubMedCrossRefGoogle Scholar
  4. Aebischer P., Selessiotis A. N., and Winn S. R. (1989) Basic fibroblast growth factor released from synthetic guidance channels facilitates regeneration across long nerve gaps.J. Neurosci. Res. 23, 282–289.PubMedCrossRefGoogle Scholar
  5. Aigner L. and Caroni P. (1993) Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones.J. Cell. Biol. 123, 417–429.PubMedCrossRefGoogle Scholar
  6. Aigner L., Arber S., Kapfhammer J. P., Laux T., Schnedier C., Botteri F., Brenner H.-R., and Caroni P. (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.Cell 83, 269–278.PubMedCrossRefGoogle Scholar
  7. Aitken J. T., Sherman M., and Young J. Z. (1947) Maturation of peripheral nerve fibres with various peripheral connections.J. Anat. 81, 1–22.PubMedCrossRefGoogle Scholar
  8. Aldskogius H. and Risling M. (1981) Effects of sciatic neurectomy on neuronal number and size distribution in L7 ganglion of kittens.Exp. Neurol. 74, 579–604.CrossRefGoogle Scholar
  9. Aldskogius H., Arvidsson J., and Grant G. (1992) Axotomy-induced changes in primary sensory neurons, inSensory Neurons: Diversity, Development, and Plasticity (Scott S. A., ed.), Oxford University Press, New York, pp. 363–383.Google Scholar
  10. Aloisi F., Care A., Borsellino G., Gallo P., Rosa S., Bassani A., Cabibbo A., Testa U., Level G., and Peschle C. (1992) Prodcution of hemolyphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1β and tumor necrosis factor.J. Immunol. 149, 2358–2366.PubMedGoogle Scholar
  11. Anderson P. N., Mitchell K., Mayor D., and Stauber V. V. (1983) An ultrastructural study of the early stages of axonal regeneration through rat nerve grafts.Neuropathol. Appl. Neurobiol. 9, 455–466.PubMedGoogle Scholar
  12. Anderson P. N., Nadim W., and Turmaine M. (1991) Schwann cell migration through freeze-killed peripheral nerve grafts without accompanying axons.Acta Neuropath. (Berl.) 82, 193–199.CrossRefGoogle Scholar
  13. Ang L. C., Bhaumick B., Munoz D. G., Sass J., and Juurlink B. H. (1992) Effects of astrocytes, insulin and insulin-like growth factor I on the survival of motoneurons in vitro.J. Neurol. Sci. 109, 168–172.PubMedCrossRefGoogle Scholar
  14. Anton E. S., Weskamp G., Reichardt L. F., and Matthew W. D. (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration.Proc. Natl. Acad. Sci. USA 91, 2795–2799.PubMedCrossRefGoogle Scholar
  15. Anzil A. P. and Wernig A. (1989) Muscle fibre loss and reinnervation after long-term denervation.J. Neurocytol. 18, 833–845.PubMedCrossRefGoogle Scholar
  16. Arakawa Y., Sendtner M. K., and Thoenen H. (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines.J. Neurosci. 10, 3507–3515.PubMedGoogle Scholar
  17. Ard M. D., Bunge R. P., and Bunge M. B. (1987) A comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth.J. Neurocytol. 16, 539–555.PubMedCrossRefGoogle Scholar
  18. Arvidsson J. and Aldskogius H. (1982) Effect of repeated nerve lesions on the number of neurons in the hypoglossal nucleus of adult rats.Exp. Neurol. 75, 520–524.PubMedCrossRefGoogle Scholar
  19. Auger M. J. and Ross J. A. (1992) The biology of the macrophage, inThe Macrophage (Lewis C. E. and McGee J. O. D., eds.), Oxford University Press, Oxford, pp. 1–74.Google Scholar
  20. Avellino A. M., Hart D., Dailey A. T., MacKinnon M., Ellegala D., and Kliot M. (1995) Differential responses in the peripheral and central nervous system during Wallerian degeneration of axons.Exp. Neurol. 136, 183–198.PubMedCrossRefGoogle Scholar
  21. Azzam N. A., Zalewski A. A., Williams L. R., and Azzam R. N. (1991) Nerve cables formed in silicone chambers reconstitute a perineurial but not a vascular endoneurial permeability barrier.J. Comp. Neurol. 314, 807–819.PubMedCrossRefGoogle Scholar
  22. Baichwal R. R., Bigbee J. W., and DeVries G. H. (1988) Macrophage-mediated myelin-related mitogenic factor for cultured Schwann cells.Proc. Natl. Acad. Sci. USA 85, 1701–1705.PubMedCrossRefGoogle Scholar
  23. Bailey S. B., Eichler M. E., Villadiego A., and Rich K. M. (1993) The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers.J. Neurocytol. 22, 176–184.PubMedCrossRefGoogle Scholar
  24. Banner L. R. and Patterson P. H. (1994) Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukaemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia.Proc. Natl. Acad. Sci. USA 91, 7109–7113.PubMedCrossRefGoogle Scholar
  25. Barde Y. A. (1989) Trophic factors and neuronal survival.Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  26. Barker P. A. and Shooter E. M. (1994) Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to trkA on PC12 cells.Neuron 13, 203–215.PubMedCrossRefGoogle Scholar
  27. Barrs D. M. (1991) Facial nerve trauma: optimal timing of repair.Laryngoscope 101, 835–848.PubMedCrossRefGoogle Scholar
  28. Bedi K. S., Winter J., Berry M., and Cohen J. (1992) Adult rat dorsal root ganglion neurons extend neurites on predegenerated but not on normal peripheral nerves in vitro.Eur. J. Neurosci. 4, 193–200.PubMedCrossRefGoogle Scholar
  29. Ben-Baruch N. and Yarden Y. (1994) Neu differentiation factors: a family of alternatively spliced neuronal and mesenchymal factors.Proc. Soc. Exp. Biol. Med. 206, 221–227.PubMedGoogle Scholar
  30. Bergsteinsdottir K., Kingston A., Mirsky R., and Jessen K. R. (1991). Rat Schwann cells produce interleukin-1.J. Neuroimmunol. 34, 15–23.PubMedCrossRefGoogle Scholar
  31. Beuche W. and Friede R. L. (1986) Myelin phagocytosis in Wallerian degeneration of peripheral nerves depends on silica-sensitive, bg/bg-negative and Fc-positive monocytes.Brain Res. 378, 97–106.PubMedCrossRefGoogle Scholar
  32. Bigbee J. W., Yoshino J. E., and DeVries G. H. (1987). Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin-enriched fraction.J. Neurocytol. 16, 487–496.PubMedCrossRefGoogle Scholar
  33. Bignami A., Chi N. H., and Dahl D. (1984) Laminin in rat sciatic nerve undergoing Wallerian degeneration. Immunofluorescence study with laminin and neurofilament antisera.J. Neuropathol. Exp. Neurol. 43, 94–103.PubMedGoogle Scholar
  34. Bisby M. A. and Chen S. (1990) Delayed Wallerian degeneration in C57BL/Ola mice is associated with impaired regeneration of sensory axons.Brain Res. 530, 117–120.PubMedCrossRefGoogle Scholar
  35. Bisby M. A. (1995) Regeneration of peripheral nervous system axons, inThe Axon: Structure, Function and Pathophysiology, (Waxman S. G., Kocsis J. D., and Stys P. K., eds.), Oxford University Press, New York, Oxford, pp. 553–578.Google Scholar
  36. Bixby J. L. (1992) Diversity of axonal growth-promoting receptors and regulation of their function.Curr. Opinion Neurobiol. 2, 66–69.CrossRefGoogle Scholar
  37. Bixby J. L. and Harris W. A. (1991) Molecular mechanisms of axon growth and guidance.Ann. Rev. Cell Biol. 7, 117–159.PubMedGoogle Scholar
  38. Bixby J. L., Pratt R. L., Lillien J., and Reichardt L. F. (1987) Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and-independent cell adhesion molecules.Proc. Natl. Acad. Sci. USA 84, 2555–2569.PubMedCrossRefGoogle Scholar
  39. Bixby J. L., Lilien J., and Riechardt L. F. (1988) Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro.J. Cell Biol. 107, 353–361.PubMedCrossRefGoogle Scholar
  40. Bixby J. L. and Zhang R. (1990) Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth.J. Cell Biol. 110, 1253–1260.PubMedCrossRefGoogle Scholar
  41. Black M. M. and Lasek R. J. (1979) Slowing of the rate of axonal regeneration during growth and regeneration.Exp. Neurol. 63, 108–119.PubMedCrossRefGoogle Scholar
  42. Bolin L. M. and Shooter E. M. (1993) Neurons regulate Schwann cell genes by diffusible molecules.J. Cell Biol. 123, 237–243.PubMedCrossRefGoogle Scholar
  43. Bolin L. M., Verity A. N., Silver J. E., Shooter E. M., and Abrams J. S. (1995) Interleukin-6 production by Schwann cells and induction in sciatic nerve injury.J. Cytochem. 64, 850–858.Google Scholar
  44. Bosch E. P., Zhong W., and Lim R. (1989) Axonal signals regulate expression of glia maturation factor-beta in Schwann cells: immunohistochemical study of injured sciatic nerve and cultured Schwann cells.J. Neurosci. 9, 3690–3698.PubMedGoogle Scholar
  45. Bray G. M. and Aguayo A. J. (1974) Regeneration of peripheral unmyelinated nerves. Fate of the axonal sprouts which develop after injury.J. Anat. 117, 517–529.PubMedGoogle Scholar
  46. Bray D., Thomas C., and Shaw G. (1978) Growth cone formation in cultures of sensory neurones.Proc. Natl. Acad. Sci. USA 75, 5226–5229.PubMedCrossRefGoogle Scholar
  47. Brenneman D. E., Neale E. A., Foster G. A., d-Autremont S. W., and Westbrook G. L. (1987) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide.J. Cell Biol. 104, 1603–1610.PubMedCrossRefGoogle Scholar
  48. Bresjanac M. and Sketelj J. (1989) Neurite-promoting influences of proliferating Schwann cells and target-tissues are not prerequisite for rapid axonal elongation after nerve crush.J. Neurosci. Res. 24, 501–507.PubMedCrossRefGoogle Scholar
  49. Brodkey J. A., Gates M. A., Laywell E. D., and Steindler D. A. (1993) The complex nature of interactive neuroregeneration-related molecules.Exp. Neurol. 123, 251–270.PubMedCrossRefGoogle Scholar
  50. Brown M. C., Lunn E. R., and Perry V. H. (1990) Failure of normal Wallerian degeneration results in very poor regeneration of cutaneous afferent fibres in mice.J. Physiol. (Lond.) 422, 12P.Google Scholar
  51. Brown M. C., Lunn E. R., and Perry V. H. (1992) Consequences of slow Wallerian degeneration for regenerating motor and sensory axons.J. Neurobiol. 23, 521–536.PubMedCrossRefGoogle Scholar
  52. Brown M. C., Lunn E. R., and Perry V. H. (1991a) Poor growth of mammalian motor and sensory axons into proximal nerve stumps.Eur. J. Neurosci. 3, 1366–1369.PubMedCrossRefGoogle Scholar
  53. Brown M. C., Perry V. H., Lunn E. R., Gordon S., and Heumann R. (1991b) Macrophage dependence of peripheral sensory nerve regeneration: Possible involvement of nerve growth factor.Neuron 6, 359–370.PubMedCrossRefGoogle Scholar
  54. Brown M. C., Perry V. H., Hunt S. P., and Lapper S. R. (1994) Further studies on motor and sensory nerve regeneration in mice with delayed wallerian degeneration.Eur. J. Neurosci. 6, 420–428.PubMedCrossRefGoogle Scholar
  55. Brown T. J., Rowe J. M., Liu J. W., and Shoyab M. (1991) Regulation of IL-6 expression by oncostatin M.J. Immunol. 147, 2175–2180.PubMedGoogle Scholar
  56. Brunetti O., Carretta M., Magni F., and Pazzaglia U. (1985) Role of the interval between axotomy and nerve suture on the success of muscle reinnervation: an experimental study in the rabbit.Exp. Neurol. 90, 308–321.PubMedCrossRefGoogle Scholar
  57. Brushart T. M. (1988) Preferential reinnervation of motor nerves by regenerating motor axons.J. Neurosci. 8, 1026–1031.PubMedGoogle Scholar
  58. Brushart T. M. (1990) Preferential motor reinnervation: a sequential double-labeling study.Restorative Neurol. and Neurosci. 1, 281–287.Google Scholar
  59. Brushart T. M. (1993) Motor axons preferentially reinnervate motor pathways.J. Neurosci. 13, 2730–2738.PubMedGoogle Scholar
  60. Buj-Bello A., Buchman V. L., Horton A., Rosenthal A., and Davies A. M. (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons.Neuron 15, 821–828.PubMedCrossRefGoogle Scholar
  61. Bunge R. P. (1987) Tissue culture observations relevant to the study of axon-Schwann cell interactions during peripheral nerve development and repair.J. Exp. Biol. 132, 21–34.PubMedGoogle Scholar
  62. Bunge R. P. and Bunge M. B. (1983) Interrelationship between Schwann cell function and extracellular matrix production.Trends Neurosci. 6, 499–505.CrossRefGoogle Scholar
  63. Bunge R. P., Bunge M. B., and Eldridge C. F. (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells.Ann. Rev. Neurosci. 9, 305–328.PubMedCrossRefGoogle Scholar
  64. Bunge M. B., Bunge R. P., Kleitman N., and Dean A. C. (1989) Role of peripheral nerve extracellular matrix in Schwann cell function and in neurite regeneration.Dev. Neurosci. 11, 348–360.PubMedGoogle Scholar
  65. Bunge M. B., Clark M. B., Dean A. C., Eldridge C. F., and Bunge R. P. (1990) Schwann cell function depends upon axonal signals and basal lamina components.Ann. NY Acad. Sci. 580, 281–287.PubMedCrossRefGoogle Scholar
  66. Burgess W. H. and Maciag T. (1989) The heparin-binding (fibroblast) growth factor family of proteins.Annu. Rev. Biochem. 58, 575–606.PubMedCrossRefGoogle Scholar
  67. Bursch W., Oberhammer F., and Schulte-Hermann R. (1992) Cell death by apoptosis and its protective role against disease.Trends Pharmacol. Sci. 13, 245–251.PubMedCrossRefGoogle Scholar
  68. Cajal Ramon Y. (1928)Degeneration and Regeneration of the Nervous System, Oxford University Press, London.Google Scholar
  69. Carbonetto S. (1991) Glial cells and extracellular matrix in axonal regrowth.Curr. Opinion Neurobiol. 1, 407–413.CrossRefGoogle Scholar
  70. Carey D. J., Todd M. S., and Rafferty C. M. (1986) Schwann cell myelination: Induction by exogenous basement membrane-like extracellular matrix.J. Cell Biol. 102, 2254–2263.PubMedCrossRefGoogle Scholar
  71. Carlsson J., Lais A. C., and Dyck P. J. (1979) Axonal atrophy from permanent peripheral axotomy in adult cat. J. Neuropathol.Exp. Neurol. 38, 579–588.Google Scholar
  72. Caroni P. and Becker M. (1992) The downregulation of growth associated proteins in motoneurons at the onset of synapse elimination is controlled by muscle activity and IGF-1.J. Neurosci. 12, 3849–3861.PubMedGoogle Scholar
  73. Caroni P. and Grandes P. (1990) Nerve spouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors.J. Cell Biol. 110, 1307–1317.PubMedCrossRefGoogle Scholar
  74. Chandross K. J., Chanson M., Spray D. C., and Kessler J. A. (1995) Transforming growth factor-B1 and forskolin modulate gap junctional communication and cellular phenotype of cultured Schwann cells.J. Neurosci. 15, 262–273.PubMedGoogle Scholar
  75. Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation.Neuron 9, 583–593.PubMedCrossRefGoogle Scholar
  76. Chao M. V. and Hempstead B. L. (1995) p75 and Trk: a two-receptor system.Trends Neurosci. 18, 321–326.PubMedCrossRefGoogle Scholar
  77. Chapman B. S. and Kuntz I. D. (1995) Modeled structure of the 75 kDa neurotrophin receptor.Protein Sci. 4, 1696–1707.PubMedGoogle Scholar
  78. Chen Y. S. H., Wang-Bennet L. T., and Coker N. J. (1989) Facial nerve regeneration in the silicone chamber: the influence of nerve growth factor.Exp. Neurol. 103, 52–60.PubMedCrossRefGoogle Scholar
  79. Chen S. and Bisby M. A. (1993) Impaired motor axon regeneration in the C57BL/Ola mouse.J. Comp. Neurol. 335, 576–585.PubMedCrossRefGoogle Scholar
  80. Cheng L., Khan M., and Mudge A. W. (1995) Calcitonin gene-related peptide promotes Schwann cell proliferation.J. Cell Biol. 129, 789–796.PubMedCrossRefGoogle Scholar
  81. Chong M. S., Woolf C. J., Andrews P., Turmaine M., Schreyer D. J., and Anderson P. N. (1994) The downregulation of GAP-43 is not responsible for the failure of regeneration in freeze-killed nerve grafts in the rat.Exp. Neurol. 129, 311–320.PubMedCrossRefGoogle Scholar
  82. Cifuentes-Diaz C., Nicolet M., Goudou D., Rieger F., and Mege R. M. (1994) N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier.Development 120, 1–11.PubMedGoogle Scholar
  83. Ciutat D., Cladero J., Oppenheim R. W., and Esquerda J. E. (1996) Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo.J. Neurosci. 16, 3979–3990.PubMedGoogle Scholar
  84. Clark E. A. and Brugge J. S. (1995) Integrins and signal transduction pathways: the road taken.Science 268, 233–239.PubMedCrossRefGoogle Scholar
  85. Clatterbuck R. E., Price D. L., and Koliatsos V. E. (1993) Ciliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system.Proc. Natl. Acad. Sci. USA 90, 2222–2226.PubMedCrossRefGoogle Scholar
  86. Clatterbuck R. E., Price D. L., and Koliatsos V. E. (1994) Further characterization of the effects of brain-derived neurotrophic factor and ciliary neurotrophic factor on axotomized neonatal and adult mammalian motor neurons.J. Comp. Neurol. 342, 45–56.PubMedCrossRefGoogle Scholar
  87. Clemence A., Mirsky R., and Jessen K. R. (1989) Nonmyelin-forming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve.J. Neurocytol. 18, 185–192.PubMedCrossRefGoogle Scholar
  88. Cleveland D. W. and Hoffman P. N. (1991) Neuronal and glial cytoskeletons.Curr. Opinion Neurobiol. 1, 346–353.CrossRefGoogle Scholar
  89. Conover J. C., Erickson J. T., Katz D. M., Bianchi L. M., Poueymirou W. T., McClain J., Pan L., Helgren M., Ip N. Y., Boland P., et al (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4.Nature 375, 235–238.PubMedCrossRefGoogle Scholar
  90. Cordeiro P. G., Seckel B. R., Lipton S. A., D’Amore P. A., Wagner J., and Madison R. (1989) Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo.Plast. Reconstr. Surg. 83, 1013–1019.PubMedGoogle Scholar
  91. Cornbrooks C. J., Carey D. J., McDonald J. A., Timple R., and Bunge R. P. (1983)In vivo andin vitro observations on laminin production by Schwann cells.Proc. Natl. Acad. Sci. USA 80, 3650–3854.CrossRefGoogle Scholar
  92. Cortazza M. H., Kassis E. S., Sproul K. A., and Schor N. F. (1996) Nerve growth factor (NGF)-mediated protection of neural crest cells from antimitotic agent-induced apoptosis: the role of the low-affinity NGF receptor.J. Neurosci. 16, 3895–3899.Google Scholar
  93. Cragg B. G. (1970) What is the signal for chromatolysis.Brain Res. 23, 1–21.PubMedCrossRefGoogle Scholar
  94. Crowley C., Spencer S. D., Nishimura M. C., Chen K. S., Pitts-Meek S., Armanini M. P., Ling L. H., McMahon S. B., Shelton D. L., Levinson A. D., and Phillips H. S. (1994) Micelacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons.Cell 76, 1001–1012.PubMedCrossRefGoogle Scholar
  95. Curtis R., Stewart H. J. S., Hall S. M., Wilkin G. P., Mirsky R., and Jessen K. R. (1992) GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system.J. Cell Biol. 116, 1455–1464.PubMedCrossRefGoogle Scholar
  96. Curtis R., Scherer S. S., Somogyi R., Adryan K. M., Ip, N. Y., Zhu Y., Lindsay R. M., and DiStefano P. S. (1994) Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve.Neuron 12, 191–204.PubMedCrossRefGoogle Scholar
  97. Curtis R., Adryan K. M., Stark J. L., Park J. S., Compton D. L., Weskamp G., Huber L. J., Chao M. V., Jaenisch R., Lee K.-F., Lindsay R. M., and DiStefano P. S. (1995) Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins.Neuron 14, 1201–1211.PubMedCrossRefGoogle Scholar
  98. Dahlin L. B., Zhao Q., and Bjusten L. M. (1995) Nerve regeneration in silicone tubes: distribution of macrophages and interleukin-1β in the formed fibrin matrix.Restorative Neurol. Neurosci. 8, 199–203.Google Scholar
  99. Danielsen N. (1990) regeneration of the rat sciatic nerve within the silicone chamber model.Restorative Neurol. Neurosci. 1, 253–259.Google Scholar
  100. Danielsen N., Pettman B., Vahlsing H. L., Manthorpe M., and Varon S. (1988) Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model.J. Neurosci. Res. 20, 320–330.PubMedCrossRefGoogle Scholar
  101. Daniloff J. K., Levi G., Grumet M., Rieger F., and Edelman G. M. (1986) Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair.J. Cell Biol. 103, 929–945.PubMedCrossRefGoogle Scholar
  102. Daniloff J. K., Crossin K. L., Pincon-Raymond M., Murawsky M., Rieger F., and Edelman G. M. (1989) Expression of cytotactin in the normal and regenerating neuromuscular system.J. Cell Biol. 108, 625–635.PubMedCrossRefGoogle Scholar
  103. David A. and Aguayo A. J. (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats.Science 214, 931–933.PubMedCrossRefGoogle Scholar
  104. David S., Braun P. E., Jackson D. L., Kottis V., and McKerracher L. (1995) Laminin overrides the inhibitory effects of peripheral nervous system and central nervous system myelin-derived inhibitors of neurites growth.J. Neurosci. Res. 42, 594–602.PubMedCrossRefGoogle Scholar
  105. Davis J. B. and Stroobant P. (1990) Platelet-derived growth factors and fibroblast growth factors are mitogens for the rat Schwann cells.J. Cell Biol. 110, 1353–1360.PubMedCrossRefGoogle Scholar
  106. Davis L., Ping D., Dewit M., and Kater S. B. (1992) Protein synthesis within neuronal growth cone.J. Neurosci. 12, 4867–4877.PubMedGoogle Scholar
  107. Davis A. M. (1994) Neurotrophic factors. Switching neurotrophin dependence.Curr. Biol. 4, 273–276.CrossRefGoogle Scholar
  108. Davis A. M. (1996) The neurotrophic hypothesis: where does it stand?Phil. Trans. Roy. Soc. B. 351, 389–394.CrossRefGoogle Scholar
  109. DeChiara T. M., Vejsada R., Poueymirou W. T., Acheson A., Suri C., Conover J. C., Friedman B., McClain J., Pan L., Stahl N., Ip N. Y., Kato A., and Yancopoulos G. D. (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth.Cell 83, 313–322.PubMedCrossRefGoogle Scholar
  110. DeLeon M., Welcher A. A., Suter U., and Shooter E. M. (1991) Identification of transcriptionally regulated genes after sciatic nerve injury.J. Neurosci. Res. 29, 437–448.CrossRefGoogle Scholar
  111. Dent E. W., Ida J. A. Jr., and Yoshina J. E. (1992) Isolated growth cones stimulate proliferation of cultured Schwann cells.Glia 5, 5105–5111.CrossRefGoogle Scholar
  112. de Medinacilli L. and Seaber A. V. (1989) Experimental nerve reconnection: importance of initial repair.Microsurgery 10, 56–70.CrossRefGoogle Scholar
  113. Derby A., Engleman V. W., Frierdich G. E., Neises G., Rapp S. R., and Roufa D. G. (1993) Nerve growth factor facilitates regeneration across nerve gaps: morphological and behavioral studies in rat sciatic nerve.Exp. Neurol. 119, 176–191.PubMedCrossRefGoogle Scholar
  114. Devor M. and Govrin-Lippman R. (1979) Maturation of axonal sprouts after nerve crush.Exp. Neurol. 64, 260–270.PubMedCrossRefGoogle Scholar
  115. Diamond J., Coughlin M., Macintyre L., Holmes M., and Visheau B. (1987) Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats.Proc. Natl. Acad. Sci. USA 84, 6596–6600.PubMedCrossRefGoogle Scholar
  116. Diamond J., Foerster A., Holmes M., and Coughlin M. (1992) Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF.J. Neurosci. 12, 1467–1476.PubMedGoogle Scholar
  117. DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., Lindsay R. M., and Wiegand S. J. (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons.Neuron 8, 983–993.PubMedCrossRefGoogle Scholar
  118. Dobrowsky R. T., Jenkins G. M., and Hannun Y. A. (1995) Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors.J. Biol. Chem. 270, 22,135–22,142.Google Scholar
  119. Doherty P., Rowett L. H., Moore S. E., Mann D. A., and Walsh F. S. (1991) Neurite outgrowth in response to transfected N-CAM and N-cadherin reveals fundamental differences in neuronal responsiveness to CAMs. Neuron 6, 247–258.PubMedCrossRefGoogle Scholar
  120. Doherty P. and Walsh F. S. (1991) The contrasting roles of N-CAM and N-cadherin as neurite out-growth-promoting molecules.J. Cell Sci. 15 (Suppl.), 13–21.Google Scholar
  121. Doherty P., Williams E., and Walsh F. S. (1995) A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth.Neuron 14, 57–66.PubMedCrossRefGoogle Scholar
  122. Dong Z., Brennan A., Liu N., Yarden Y., Lefkowitz G., Mirsky R., and Jessen K. R. (1995) Neu Differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors.Neuron 15, 585–596.PubMedCrossRefGoogle Scholar
  123. Doyu M., Sobue G., Ken E., Kimata K., Shinomura T., Yamada Y., Mitsuma T., and Takahashi A. (1993) Laminin A, B1, and B2 chain gene expression in transected and regenerating nerves: regulation by axonal signals.Ann. Neurochem. 60, 543–551.CrossRefGoogle Scholar
  124. Ducker T. B. and Kauffman F. C. (1976) Metabolic factors in surgery of peripheral nerves.Clin. Neurosurg. 24, 406–424.Google Scholar
  125. Ducker T. B., Kempe L. G., and Hayes G. J. (1969) The metabolic background for peripheral nerve surgery.J. Neurosurg. 30, 270–280.PubMedGoogle Scholar
  126. Ebendal T., Tomac A., Hoffer B. J., and Olson L. (1995) Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia.J. Neurosci. Res. 40, 276–284.PubMedCrossRefGoogle Scholar
  127. Eccleston P. A., Collarini E. J., Jessen M. R., Mirsky R., and Richardson W. D. (1990) Schwann cells secrete a PDGF-like factor: evidence for an autocrine growth mechanism involving PDGF.Eur. J. Neurosci. 2, 985–992.PubMedCrossRefGoogle Scholar
  128. Eckenstein F. P., Shipley G. D., and Nishi R. (1991) Acidic and basic fibroblast growth factors in the nervous system: distribution and differential alteration of levels after injury of central versus peripheral nerve.J. Neurosci. 11, 412–419.PubMedGoogle Scholar
  129. Edbladh M., Fex-Svenningsen A., Ekstrom P. A., and Edstrom A. (1994) Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons.Brain Res. 641, 76–82.PubMedCrossRefGoogle Scholar
  130. Ekstrom Per A. R. (1995) Neurones and glial cells of the mouse sciatic nerve undergo apoptosis after injuryin vivo andin vitro.Neuroreport 6, 1029–1032.Google Scholar
  131. Elde R., Cao Y., Cintra A., Brelje T. C., Pelto-Huikko M., Junttila T., Fuxe K., Pettersson R. F., and Hokfelt T. (1991) Prominent expression of acidic fibroblast growth factor in motor and sensory neurons.Neuron 7, 349–364.PubMedCrossRefGoogle Scholar
  132. Enver M. K. and Hall S. M. (1994) Are Schwann cells essential for axonal regeneration into muscle autografts?Neuropathol. Appl. Neurobiol. 20, 587–598.PubMedCrossRefGoogle Scholar
  133. Erickson H. P. (1993) Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions.Curr. Opinion Cell Biol 5, 869–876.PubMedCrossRefGoogle Scholar
  134. Ernfors P., Henschen A., Olson L., and Persson H. (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons.Neuron 2, 1605–1613.PubMedCrossRefGoogle Scholar
  135. Ernfors P. and Persson H. (1991) Developmentally regulated expression of BDNF/NT-3 mRNA in rat spinal cord motor neurons and expression of BDNF mRNA in embryonic dorsal root ganglion.Eur. J. Neurosci. 3, 953–961.PubMedCrossRefGoogle Scholar
  136. Evans D. H. L. (1947) Endings produced by somatic nerve fibres growing into adrenal gland.J. Anat. 81, 225–232.PubMedGoogle Scholar
  137. Evans P. J., Midha R., and MacKinnon S. E. (1994) The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology.Prog. Neurobiol. 43, 187–233.PubMedCrossRefGoogle Scholar
  138. Eyer J. and Peterson A. (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-β-galactosidase fusion protein.Neuron 12, 389–405.PubMedCrossRefGoogle Scholar
  139. Falls D. L., Rosen K. M., Corfas G., Lane W. S., and Fischbach G. D. (1993) ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family.Cell 72, 801–815.PubMedCrossRefGoogle Scholar
  140. Fawcett J. W. and Keynes R. J. (1986) Muscle basal lamina: a new graft material for peripheral nerve repair.J. Neurosurg. 65, 354–363.PubMedGoogle Scholar
  141. Fawcett J. W. and Keynes R. J. (1990) Peripheral nerve regeneration.Annu. Rev. Neurosci. 13, 43–60.PubMedCrossRefGoogle Scholar
  142. Ferguson I. A. and Johnson E. M. (1991) Fibroblast growth factor receptor-bearing neurons in the CNS: identification by receptor-mediated retrograde transport.J. Comp. Neurol. 313, 693–706.PubMedCrossRefGoogle Scholar
  143. Fernandez-Valle C., Bunge R. P., and Bunge M. B. (1995) Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration.J. Neurocytol. 24, 667–679.PubMedCrossRefGoogle Scholar
  144. Fernyhough P., Willars G. B., Lindsay R. M., and Tomlinson D. R. (1993) Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neurons.Brain Res. 607, 117–124.PubMedCrossRefGoogle Scholar
  145. Fields R. D., Le Beau J. M., Longo F. M., and Ellisman M. H. (1989) Nerve regeneration through artificial tubular implants.Prog. Neurobiol. 33, 87–134.PubMedCrossRefGoogle Scholar
  146. Finkelstein D. I., Luff A. R., and Schuijers J. A. (1992) Immunity to nerve growth factor and effect on motor unit reinnervation in the rabbit.Am. J. Physiol. 262, R813-R818.PubMedGoogle Scholar
  147. Fontaine B., Klarsfeld A., and Changeux J. P. (1987) Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways.J. Cell Biol. 105, 1337–1342.PubMedCrossRefGoogle Scholar
  148. Friede R. L. and Bischhausen R. (1980) The fine structure of stumps of transected nerve fibers in subserial sections.J. Neurol. Sci. 44, 181–203.PubMedCrossRefGoogle Scholar
  149. Friedlander D. R., Grumet M., and Edelman G. M. (1986) Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC12 cells.J. Cell Biol. 102, 413–419.PubMedCrossRefGoogle Scholar
  150. Friedman B., Scherer S. S., Rudge J. S., Helgren M., Morrisey D., McClain J., Wang D.-Y., Wiegand S. J., Furth M. E., Lindsay R. M., and Ip N. Y. (1992) Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cellin vivo.Neuron 9, 295–305.PubMedCrossRefGoogle Scholar
  151. Friedman B., Kleinfeld D., Ip N. Y., Verge V. M. K., Moulton R., Boland P., Zlotchenko E., Lindsay R. M., and Liu L. (1995) Neurotrophic influence on injured adult spinal motor neurons.J. Neurosci. 15, 1044–1056.PubMedGoogle Scholar
  152. Fruttiger M., Schachner M., and Martini R. (1995) Tenascin-C expression during wallerian degeneration in c57BL/Wlds mice: possible implications for axonal regeneration.J. Neurocytol. 24, 1–14.PubMedCrossRefGoogle Scholar
  153. Fu S. Y. and Gordon T. (1995a) Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy.J. Neurosci. 15, 3876–3885.PubMedGoogle Scholar
  154. Fu S. Y. and Gordon T. (1995b) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation.J. Neurosci. 15, 3886–3895.PubMedGoogle Scholar
  155. Funakoshi H., Frisen J., Barbany G., Timmusk T., Zachrisson O., Verge V. M. K., and Persson H. (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve.J. Cell Biol. 123, 455–465.PubMedCrossRefGoogle Scholar
  156. Gearing D. P., Comeau M. R., Friend D. J., Gimpel S. D., Thut C. J., McGourty J., Brasher K. K., King J. A., Gillis S., Mosley B., Ziegler S. F., and Cosman D. (1992) The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor.Science 255, 1434–1437.PubMedCrossRefGoogle Scholar
  157. George E. B., Glass J. D., and Griffin J. W. (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels.J. Neurosci. 15, 6445–6452.PubMedGoogle Scholar
  158. Giannini C. and Dyck P. J. (1990) The fate of Schwann cell basement membranes in permanently transected nerves.J. Neuropathol. Exp. Neurol. 49, 550–563.PubMedGoogle Scholar
  159. Gimenez-Gallego G. and Cuevas P. (1994) Fibroblast growth factors, proteins with a broad spectrum of biological activities.Neurol. Res. 16, 313–316.PubMedGoogle Scholar
  160. Glasby M. A., Gschmeissner S. E., Huang C. L., and De Souza B. A. (1986) Degenerated muscle grafts used for peripheral nerve repair in primates.J. Hand. Surg. 11B, 347–351.Google Scholar
  161. Glass J. D., Brushart T. M., George E. B., and Griffen, J. W. (1993) Prolonged survival of transected nerve fibres in C57B1/Ola mice in an intrinsic characteristic of the axon.J. Neurocytol. 22, 311–321.PubMedCrossRefGoogle Scholar
  162. Glazner G. W., Lupien S., Miller J. A., and Ishii D. N. (1993) Insulin-like growth factor II increases the rate of sciatic nerve regeneration in rats.Neuroscience 54, 791–797.PubMedCrossRefGoogle Scholar
  163. Gordon T. and Stein R. B. (1982) Time course and extent of recovery in reinnervated motor units of cat triceps surae muscles.J. Physiol. (Lond.) 323, 307–323.Google Scholar
  164. Gordon T. (1983) Dependence of peripheral nerves on their target organs, inSomatic and Autonomic Nerve-Muscle Interactions (Burnstock G., Vrbova G., and O’Brien R. A., eds.), Elsevier, New York, pp. 289–323.Google Scholar
  165. Gordon T., Gillespie J., Orozco R., and Davis L. (1991) Axotomy-induced changes in rabbit hindlimb nerves and the effects of chronic electrical stimulation.J. Neurosci. 11, 2157–2169.PubMedGoogle Scholar
  166. Gordon T. (1994) Mechanisms for functional recovery of the larynx after surgical repair of injured nerves.J. Voice 8, 70–78.PubMedCrossRefGoogle Scholar
  167. Gordon T. and Fu S. Y. (1997) Long-term response to nerve injury.Adv. Neurol. vol. 72, Neuronal Regeneration, Reorganization, and Repair (Seil F. J., ed.), Lippincott-Raven, Philadelphia, pp. 185–199.Google Scholar
  168. Graeber M. B., Tetzlaff W., Streit W. J., and Kreutzberg G. W. (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy.Neurosci. Lett. 85, 317–321.PubMedCrossRefGoogle Scholar
  169. Grafstein B. (1975) The nerve cell body response to axotomy.Exp. Neurol. 48(II), 32–51.PubMedCrossRefGoogle Scholar
  170. Grafstein B. and McQuarrie J. G. (1978) Role of the nerve cell body in axonal regeneration, inNeuronal Plasticity (Cotman C. W., ed.), Raven, New York, pp. 155–196.Google Scholar
  171. Greenberg S. G. and Lasek R. J. (1988) Neurofilament protein synthesis in DRG nerurons decreases more after peripheral axotomy than after central axotomy.J. Neurosci. 8, 1739–1746.PubMedGoogle Scholar
  172. Greenman M. J. (1913) Studies on the regeneration of the peroneal nerve of the albino rat: number and sectional area of fibers: area relation of axis to sheath.J. Comp. Neurol. 23, 479–513.CrossRefGoogle Scholar
  173. Greensmith L. and Vrbova G. (1996) Motoneuronal survival: a functional approach.Trends Neurosci. 19, 450–455.PubMedCrossRefGoogle Scholar
  174. Griffen J. W., George R., and Ho T. (1993) Macrophage systems in peripheral nerves. A review.J. Neuropathol. Exp. Neurol. 52, 553–560.Google Scholar
  175. Grothe C. and Unsicker K. (1992) Basic fibroblast growth factor in the hypoglossal system: specific retrograde transport, trophic and lesion-related responses.J. Neurosci. Res.,32, 317–328.PubMedCrossRefGoogle Scholar
  176. Guenard V., Dinarelle C. A., Weston P. J., and Aebischer P. (1991) Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel.J. Neurosci. Res. 29, 396–400.PubMedCrossRefGoogle Scholar
  177. Gulati A. K. (1988) Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve.J. Neurosurg. 68, 117–123.PubMedGoogle Scholar
  178. Gurney M. E., Yamamoto H., and Kwon Y. (1992) Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor.J. Neurosci. 12, 3241–3247.PubMedGoogle Scholar
  179. Gutmann E., Gutmann L., Medawar P. B., and Young J. Z. (1942) The rate of regeneration.J. Exp. Biol. 19, 14–44.Google Scholar
  180. Gutmann E. and Sanders F. K. (1943) Recovery of fibre numbers and diameters in the regeneration of peripheral nerves.J. Physiol. (Lond.) 101, 489–518.Google Scholar
  181. Gutmann E. and Young J. Z. (1944) The re-innervation of muscle after various periods of atrophy.J. Anat. 78, 15–44.PubMedGoogle Scholar
  182. Gutmann E. (1948) Effect of delay of innervation on recovery of muscle after nerve lesions.J. Neurophysiol. 11, 279–294.PubMedGoogle Scholar
  183. Gutmann E. (1958)Die functional regeneration der peripheren Nerven. Akademie-Verlag, Berlin.Google Scholar
  184. Haas C. A., Donath C., and Kreutzberg G. W. (1993) Differential expression of immediate early genes after transection of the facial nerve.neuroscience 53, 91–99.PubMedCrossRefGoogle Scholar
  185. Haas C. A., Streit W. J., and Kreutzberg G. W. (1990) Rat facial motoneurons express increased levels of calcitonin gene-related peptide mRNA in response to axotomy.J. Neurosci. Res. 27, 270–275.PubMedCrossRefGoogle Scholar
  186. haftek J. and Thomas P. K. (1968) Electron-microscope observation on the effects of localized crush injuries on the connective tissues of the peripheral nerve.J. Anat. 103, 233–243.PubMedGoogle Scholar
  187. Hall M. E. (1982) Changes in synthesis of specific proteins in axotomized dorsal root ganglia.Exp. Neurol. 76, 83–93.PubMedCrossRefGoogle Scholar
  188. Hall S. M. (1986a) Regeneration in cellular and acellular autografts in the peripheral nervous system.Neuropathol. Appl. Neurobiol. 12, 27–46.PubMedGoogle Scholar
  189. Hall S. M. (1986b) The effect of inhibiting Schwann cell mitosis on the reinnervation of acellular autografts in the peripheral nervous system.Neuropathol. Appl. Neurobiol. 12, 401–414.PubMedGoogle Scholar
  190. Ham J., Babij C., Whitfield J., Pfarr C. M., Lallemand D., yaniv M., and Rubin L. L. (1995) A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death.Neuron 14, 927–939.PubMedCrossRefGoogle Scholar
  191. Hannun Y. A. and Obeid L. M. (1995) Ceramide: an intracellular signal for apoptosis.Trends Biochem. Sci. 20, 73–77.PubMedCrossRefGoogle Scholar
  192. Hansson H. A., Dahlin L. B., Danielsen N., Fryklund L., Nachemson A. K., Polleryd P., Rozell B., Skottner A., Stemme S., and Lundborg G. (1986) Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves.Acta. Physiol. Scand. 126, 609–614.PubMedGoogle Scholar
  193. Hansson H. A., Rozell B., and Stottner A. (1987) Rapid axoplasmic transport of insulin-like growth factor I in the sciatic nerve of adult rats.Cell Tiss. Res. 247, 241–247.CrossRefGoogle Scholar
  194. Hardy M., Reddy U. R., and Pleasure D. (1992) Platelet-derived growth factor and regulation of Schwann cell proliferation in vivo.J. Neurosci. Res. 31, 254–262.PubMedCrossRefGoogle Scholar
  195. Harman K., Katnick J., Lim R., Zaheer A., and de la Torre J. C. (1991) Glia maturation factor β stimulates axon regeneration in transected rat sciatic nerve.Brain Res. 564, 332–335.PubMedCrossRefGoogle Scholar
  196. Harper S. J., Bolsover, S. R., Walsh F. S., and Doherty P. (1994) Neurite outgrowth stimulated by L-1 requires calcium influx into neurons but is not associated with changes in steady state levels of calcium in growth cones.Cell Adhes. Commun. 2, 441–453.PubMedCrossRefGoogle Scholar
  197. Hempstead H. K., Martin-Zanca D., Kaplan D. R., Parada L. F., and Chao M. V. (1991) High-affinity NGF binding requires co-expression of the trk proto-oncogene and the low affinity NGF receptor.Nature 350, 678–683.PubMedCrossRefGoogle Scholar
  198. Henderson C. E., Camu W., Mettling C., Gouin A., Poulsen K., Karihaloo M., Rullamas J., Evans T., McMahon S. P., Armanini M. P., Berkemeier L., Philips H. S., and Rosenthal A. (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud.Nature 363, 678–683.CrossRefGoogle Scholar
  199. Henderson C. E., Phillips H. S., Pollock R. A., Davies A. M., Lemeulle C., Armanini M., Simmons L., Moffet B., Vandlen R. A., Simpson L. C., et al. (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle.Science 266, 1062–1064.PubMedCrossRefGoogle Scholar
  200. Heslop J. P. (1975) Axonal low and fast transport in nerves.Adv. Comp. Physiol. Biochem. 6, 75–163.PubMedGoogle Scholar
  201. Heumann R., Korsching S., Bandtlow C., and Thoenen H. (1987a) Changes of nerve growth factor synthesis in nonneural cells in response to sciatic nerve section.J. Cell Biol. 104, 1623–1631.PubMedCrossRefGoogle Scholar
  202. Heumann R., Lindholm D., Bandtlow C., Meyer M., Radeke M. J., Misko T. P., Shooter E., and Thoenen H. (1987b) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerves during development, degeneration and regeneration: role of macrophages.Proc. Natl. Acad. Sci. USA 84, 8735–8739.PubMedCrossRefGoogle Scholar
  203. Hildebrand C., Mystafa G. Y., and Waxman S. G. (1986) Remodeling of internodes in regenerating rat sciatic nerve: electron microscopic observations.J. Neurocytol. 15, 681–692.PubMedCrossRefGoogle Scholar
  204. Hildebrand C., Bow C. M., and Remahl I. N. (1994) Myelination and myelin sheath remodeling in normal and pathological PNS nerve fibres.Prog. Neurobiol. 43, 85–141.PubMedCrossRefGoogle Scholar
  205. Himes B. T. and Tessler A. (1989) Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats.J. Comp. Neurol. 284, 215–230.PubMedCrossRefGoogle Scholar
  206. Hoffman P. N. (1989) Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons.J. Neurosci. 9, 893–897.PubMedGoogle Scholar
  207. Hoffman P. N., Griffen J. W., and Price D. L. (1984) Control of axonal caliber by neurofilament transport.J. Cell Biol. 99, 705–714.PubMedCrossRefGoogle Scholar
  208. Hoffman P. N., Cleveland D. W., Griffin J. W., Landes P. W., Cowan N. J., and Price D. L. (1987) Neurofilament gene expression: a major determinant of axon caliber.Proc. Natl. Acad. Sci. USA 84, 3472–3476.PubMedCrossRefGoogle Scholar
  209. Hoffman P. N. and Cleveland D. W. (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: Induction of a specific beta tubulin isotype.Proc. Natl. Acad. Sci. USA 85, 4530–4533.PubMedCrossRefGoogle Scholar
  210. Holmes W. and Young J. Z. (1942) Nerve regeneration after immediate and delayed suture.J. Anat. 77, 63–106.PubMedGoogle Scholar
  211. Holmes W. E., Suwkowski M. X., Akita R. W., Henzel W. J., Lee J., Parn J. W., Yansura D., Abadi N., Raab H., Lewis G. D., et al. (1992) Identification of heregulin, a specific activator of p185erb2.Science 256, 1205–1210.PubMedCrossRefGoogle Scholar
  212. Hopkins J. M., Ford-Holevinski T. S., McCoy J. P. and Agranoff B. W. (1985) Laminin and optic nerve regeneration in the goldfish.J. Neurosci. 5, 3030–3038.PubMedGoogle Scholar
  213. Hulsebosch C. E., Perez-Polo J. R., and Coggeshall R. E. (1987) In vivo ANTI-NGF induces sprouting of sensory axons in dorsal roots.J. Comp. Neurol. 259, 445–451.PubMedCrossRefGoogle Scholar
  214. Husmann K., Faissner A., and Schachner M. (1992) Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in fibronectin type III repeats.J. Cell Biol. 116, 1475–1486.PubMedCrossRefGoogle Scholar
  215. Ibanez C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., and Persson H. (1992) Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product.Cell 69, 329–341.PubMedCrossRefGoogle Scholar
  216. Ide C., Tohyama K., Yokota R., Nitatori T., and Onodera S. (1983) Schwann cell basal lamina and nerve regeneration.Brain Res. 288, 61–75.PubMedCrossRefGoogle Scholar
  217. Ip N. Y., Li Y., Van de Stadt I., Panayotatos N., Alderson R. F. and Lindsay R. M. (1991) Ciliary neurotrophic factor enhances survival in embryonic rat hippocampal cultures.J. Neurosci. 11, 3124–3134.PubMedGoogle Scholar
  218. Ip N. Y., Nye S. H., Boulton T. G., Davis S., Taga T., Li Y., Birren S. J., Yasukawa K., Kishimotor T., Anderson D. J., Stahl N., and Yancopoulos G. D. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130.Cell 69, 1121–1132.PubMedCrossRefGoogle Scholar
  219. Irintchev A., Draguhn A., and Wernig A. (1990) Reinnervation and recovery of mouse soleus muscle after long-term denervation.Neuroscience 39, 231–243.PubMedCrossRefGoogle Scholar
  220. Ishii D. N., Glazner G. W., and Pu S.-F. (1994) Role of insulin-like growth factors in peripheral nerve regeneration.Pharmacol. Ther. 62, 125–144.PubMedCrossRefGoogle Scholar
  221. Ishikawa R., Nishikori K., Furukawa Y., Hayashi K., and Furukawa S. (1992) Injury-induced reduction of acidic fibroblast growth factor levels in the distal parts of the rat sciatic nerve.Neurosci. Lett. 135, 113–116.PubMedCrossRefGoogle Scholar
  222. Jenkins R. and Hunt S. P. (1991) Long term increases in the levels of c-jun mRNA and Jun protein like immunoreactivity in motor and sensory neurons folloing axon damage.Neurosci. Lett. 129, 107–111.PubMedCrossRefGoogle Scholar
  223. Jenq C.-B. and Coggeshall R. E. (1985a) Numbers of regenerating axons in parent and tributary peripheral nerves in the rat.Brain Res. 326, 27–40.PubMedCrossRefGoogle Scholar
  224. Jenq C.-B. and Coggeshall R. E. (1985b) Long-term patterns of axon regeneration in the sciatic nerve and its tributaries.Brain Res. 345, 34–44.PubMedCrossRefGoogle Scholar
  225. Jessen K. R. and Mirsky R. (1992) Schwann cells: early lineage, regulation of proliferation and control of myelin formation.Curr. Opinion Neurobiol. 2, 575–581.CrossRefGoogle Scholar
  226. Jessen K. R., Mirsky R., and Morgan L. (1987a) Axonal signals regulate the differentiation of nonmyelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves.J. Neurosci. 7, 3362–3369.PubMedGoogle Scholar
  227. Jessen K. R., Mirsky R., and Morgan L. (1987b) Myelinated, but not unmyelinated axons, reversibly down-regulate N-CAM in Schwann cells.J. Neurocytol. 16, 681–688.PubMedCrossRefGoogle Scholar
  228. Jessen K. R., Mirsky R., and Morgan L. (1991) Role of cyclic AMP and proliferation controls in Schwann cell differentiation.Ann. NY Acad. Sci. 633, 78–89.PubMedCrossRefGoogle Scholar
  229. Kanje M., Skottner J., and Lundberg G. (1989) Insulin-like growth factor I (IGF-I) stimulates regeneration of the sciatic nerve.Brain Res. 486, 396–398.PubMedCrossRefGoogle Scholar
  230. Karlsson J.-E., Rosengren L. E., Wang S., Danielsen N., and Haglid K. G. (1993) Glial and neuronal marker proteins in the silicone chamber model for nerve regeneration.J. Neurochem. 60, 1098–1104.PubMedCrossRefGoogle Scholar
  231. Kato S. and Ide C. (1994) Axonal sprouting at the node of Ranvier of the peripheral nerve disconected with the cell body.Restorative Neurol. Neurosci. 6, 181–187.Google Scholar
  232. Kauppila T., Jyvasjarvi E., Huopaniemi T., Hujanen E., and Liesi P. (1993) A laminin graft replaces neurorhaphy, in the restorative surgery of the rat sciatic nerve.Exp. Neurol. 123, 181–191.PubMedCrossRefGoogle Scholar
  233. Kiefer R., Lindholm D., and Kreutzberg G. W. (1993) Interleukin-6 and transforming growth factor-b1 mRNAs are induced in rat facial nucleus following motoneuron axotomy.Eur. J. Neurosci. 5, 775–781.PubMedCrossRefGoogle Scholar
  234. Kingston A. E., Bergsteinsdottir K., Jessen K. R., Van der Meide P. H., Colston M. J., and Mirsky R. (1989) Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-gamma pretreatment: synergistic effects of interferon-gamma and tumor necrosis factor on MHC class II induction.Eur. J. Immunol. 19, 177–183.PubMedCrossRefGoogle Scholar
  235. Klein R., Smeyne R. J., Wurst W., Long L. K., Auerbach B. A., Joyner A. L., and Barbacid M. (1993) Targeted disruption of thetrkB neurotrophin receptor gene results in nervous system lesions and neonatal death.Cell 75, 113–122.PubMedGoogle Scholar
  236. Klein R., Silos-Santiago I., Smeyne R. J., Lira S. A., Brambilla R., Bryant S., Zhang L., Snider W. D., and Barbacid M. (1994) disruption of the neurotrophin-3 receptor genetrkC eliminates Ia muscle afferents and results in abnormal movements.Nature 368, 249–251.PubMedCrossRefGoogle Scholar
  237. Kleitman N., Simon D. K., Schachner M., and Bunge R. P. (1988a) Growth of embryonic retinal neurites elicited by contact with Schwann cell surfaces is blocked by antibodies to L1.Exp. Neurol. 102, 298–306.PubMedCrossRefGoogle Scholar
  238. Kline D. G. and Hudson A. R. (1995)Nerve Injuries: Operative Results for Major Nerve Injuries, Entrapments and Tumors. Saunders, Philadelphia.Google Scholar
  239. Kobayashi N. R., Bedard A. N., Hincke M. T., and Tetzlaff W. (1996) Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy.Eur. J. Neurosci. 8, 1018–1029.PubMedCrossRefGoogle Scholar
  240. Koliatsos V. E., Crawford T. O., and Price D. L. (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons.Brain Res. 549, 297–304.PubMedCrossRefGoogle Scholar
  241. Koliatsos V. E., Clatterbuck R. E., Winslow J. W., Cayouette M. H., and Price D. L. (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo.Neuron 10, 359–367.PubMedCrossRefGoogle Scholar
  242. Koliatsos V. E., Cayouette M. H., Berkemeier L. R., Clatterbuck R. E., Price D. L., and Rosenthal A. (1994a) Neurotrophin 4/5 is a trophic factor for mammalian factial motor neurons.Proc. Natl. Acad. Sci. USA 91, 3304–3308.PubMedCrossRefGoogle Scholar
  243. Koliatsos V. E., Price W. L., Pardo C. A., and Price D. L. (1994b) Ventral root avulsion: an experimental model of death of adult motor neurons.J. Comp. Neurol. 342, 35–44.PubMedCrossRefGoogle Scholar
  244. Korsching S. (1993) The neurotrophic factor concept: a reexamination.J. Neurosci. 13, 2739–2748.PubMedGoogle Scholar
  245. Kreutzberg G. W. (1995) Reaction of the neuronal cell body to axonal damage, inThe Axon: Structure, Function and Pathophysiology (Waxman S. G., Kocsis J. D. and Stys P. K., eds.), Oxford University Press, New York, Oxford, pp. 355–374.Google Scholar
  246. Kruse J., Mailhammer R. Wernecke H., Faissner A., Sommer I., Goridis C., and Schachner M. (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1.Nature 311, 153–155.PubMedCrossRefGoogle Scholar
  247. Kunemund V., Jungalwala F. B., Fischer G., Chou D. K., Keilhauer G., and Schachner M. (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interaction.J. Cell. Biol. 106, 213–223.PubMedCrossRefGoogle Scholar
  248. Kuno M. (1990) Target dependence of motoneuronal survival: the current status.Neurosci. Res. 9, 155–172.PubMedCrossRefGoogle Scholar
  249. Kushima Y. and Hatanaka, H. (1992) Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat, spinal cord.Neurosci. Lett. 143, 110–114.PubMedCrossRefGoogle Scholar
  250. Landmesser L., Dahm L., Tang J. C., and Rutishauser U. (1990) Polysialic acid as a regulator of intramuscular nerve branching during embryonic development.Neuron 4, 655–667.PubMedCrossRefGoogle Scholar
  251. Langley J. N. and Anderson H. K. (1904) The union of different kinds of nerve fibres.J. Physiol. (Lond.) 31, 365–391.Google Scholar
  252. Laquerriere A., Peulve P., Jin O., Tiollier J., Tardy M., Vaudry H., Hemet J., and Tadie M. (1994) Effects of basic fibroblast factor and alpha-melanocytic stimulating hormone on nerve regeneration through a collagen channel.Microsurgery 15, 203–210.PubMedCrossRefGoogle Scholar
  253. Leah J. D., Herdegen T., and Bravo R. (1991) Selective expression of Jun proteins following axotomy and axonal transport block in peripheral nerves in the rat: evidence for a role in the regeneration process.Brain Res. 566, 198–207.PubMedCrossRefGoogle Scholar
  254. Le Beau J. M., Ellisman M. H., and Powell H. C. (1988) Ultrastructural and morphometric analysis of long term peripheral nerve regeneration through silicone tubes.J. Neurocytol. 17, 161–172.PubMedCrossRefGoogle Scholar
  255. LeBlanc A. C. and Poduslo J. F. (1990) Axonal modulation of myelin gene expression in the peripheral nerve.J. Neurosci. Res. 26, 317–326.PubMedCrossRefGoogle Scholar
  256. Lemke G. and Chao M. (1988) Axons regulate Schwann cell expression of the major myelin and NGF receptor genes.Development 102, 499–504.PubMedGoogle Scholar
  257. Letourneau P. C. (1988) Interactions of growing axons with fibronectin and laminin, inThe Cur-rent Status of Peripheral Nerve Regeneration, Neurology and Neurobiology, vol. 38 (Gordon T., Stein R. B., and Smith, P. A. eds.), Liss, New York, pp. 99–110.Google Scholar
  258. Letourneau P. C., Roche F. K., Shattuck T. A., Lemmon V., and Takeichi M. (1991) Interaction of Schwann cells with neurite and with other Schwann cells involve the calcium-dependent adhesion molecule, N-cadherinJ. Neurobiol. 22, 707–720.PubMedCrossRefGoogle Scholar
  259. Levi A. D., Bunge R. P., Lofgren J. A., Meima L., Hefti F., Nikolics K., and Sliwkowski M. X. (1995) The influence of heregulins on human Schwann cell proliferation.J. Neurosci. 15 1329–1340.PubMedGoogle Scholar
  260. Li L., Oppenheim R. W., Lei M., and Houenou L. J. (1994) Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse.J. Neurobiol. 25, 759–766.PubMedCrossRefGoogle Scholar
  261. Li L., Wu W., Lin L.-F., Lei M., Oppenheim R. W., and Houenou L. J. (1995) Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor.Proc. Natl. Acad. Sci. USA 92, 9771–9775.PubMedCrossRefGoogle Scholar
  262. Lieberman A. R. (1971) The axon reaction. A review of principle features of perikaryal responses to axon injury.Int. Rev. Neurobiol. 14, 49–124.PubMedCrossRefGoogle Scholar
  263. Lieberman A. R. (1974) Some factors affecting retrograde neuronal responses to axonal lesions, inEssays on the Central Nervous System (Bellairs R. and Gray E. G., eds.), Clarendon, Oxford, pp. 71–105.Google Scholar
  264. Liesi P. (1985) Laminin immunoreactive glial cells distinguish regenerative CNS systems from nonregenerative ones.EMBO J. 4, 2502–2511.Google Scholar
  265. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science 260, 1130–1132.PubMedCrossRefGoogle Scholar
  266. Lindholm D., Heumann R., Meyer M., and Thoenen H. (1987) Interleukin-1 regulates synthesis of nerve growth factor, in nonneuronal cells of rat sciatic nerve.Nature 330, 658,659.PubMedCrossRefGoogle Scholar
  267. Lindholm D., Heumann R., Meyer M., and Thoenen H. (1988) Interleukin-1 increases stability and transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts.J. Biol. Chem. 263, 16,348–16,351.Google Scholar
  268. Lindsay R. M., Wiegand S. J., Altar C. A., and DiStefano P. S. (1994) Neurotrophic factors: from molecule to man.Trends Neurosci. 17, 182–190.PubMedCrossRefGoogle Scholar
  269. Lipton S. A., Wagner J. A., Madison R. D., and D’Amore P. A. (1988) Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture.Proc. Natl. Acad. Sci. USA 85, 2388–2392.PubMedCrossRefGoogle Scholar
  270. Liu H. M. (1992) The role of extracellular matrix in peripheral nerve regeneration: a wound chamber study.Acta Neuropathol. 83, 469–474.PubMedCrossRefGoogle Scholar
  271. Liu H. M., Yang L. H., and Yang Y. J. (1995) Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration.J. Neuropathol. Exp. Neurol. 54, 487–496.PubMedGoogle Scholar
  272. Lo A. C., Houenou L. J., and Oppenheim R. W. (1995) Apoptosis in the nervous system: morphological features, methods, pathology, and prevention.Arch. Histol. Cytol. 58, 139–149.PubMedGoogle Scholar
  273. Lochter A., Vaughan L., Kaplony A., Prochaintz A., Schachner M., and Faissner A. (1991) J1/tenascin in substrate-bound and soluble forme displays contrary effects on neurite outgrowth.J. Cell Biol. 113, 1159–1171.PubMedCrossRefGoogle Scholar
  274. Longo F. M., Manthorpe M., Skaper S. D., Lundborg G., and Varon S. (1983) Neuronotrophic activaties accumulate in vivo within silicone nerve regeneration chambers.Brain Res. 261, 109–117.PubMedCrossRefGoogle Scholar
  275. Lu B., Fu W., Greengard P., and Poo M.-M. (1993) Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction.Nature 363, 76–79.PubMedCrossRefGoogle Scholar
  276. Lubinska L. and Niemierko S. (1971) Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves.Brain Res. 27, 329–342.PubMedCrossRefGoogle Scholar
  277. Lundborg G., Dahlin L. B., Danielsen N., Gelberman R. H., Longo F. M., Powell H. C., and Varon S. (1982) Nerve regeneration in silicone model chambers: influence of gap length and of distal stump components.Exp. Neurol. 76, 361–375.PubMedCrossRefGoogle Scholar
  278. Lundborg G. (1987) Nerve regeneration and repair.Acta Orthop. Scand. 58, 145–169.PubMedCrossRefGoogle Scholar
  279. Lundborg G. (1988)Nerve Injury and Repair. Churchill Livingstone, New York.Google Scholar
  280. Lunn E. R., Perry V. H., Brown M. C., Rosen H., and Gordon S. (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve.Eur. J. Neurosci. 1, 27–33.PubMedCrossRefGoogle Scholar
  281. Mackinnon S. E. (1989) New directions in peripheral nerve surgery.Ann. Plast. Surg. 22, 257–272.PubMedGoogle Scholar
  282. Mackinson S., Dellon L., and O’Brien J. (1991) Changes in nerve fibre numbers distal to nerve repair in the rat sciatic nerve model.Muscle Nerve 14, 1116–1122.CrossRefGoogle Scholar
  283. Madison R., Da Silva C. F., Dikkes P., Sidman R. L., and Chiu T.-H. (1985) Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and laminin containing gel.Exp. Neurol. 88, 767–772.PubMedCrossRefGoogle Scholar
  284. Mahanthappa N. K., Anton E. S., and Matthew W. D. (1996) Glial growth factor 2, a soluble neuroregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth.J. Neurosci. 16, 4673–4683.PubMedGoogle Scholar
  285. Manthorpe M., Skaper S., Adler R., Landa K., and Varon S. (1980) Cholinergic neurotrophic factors: fractionation properties of an extract from selected chick embryonic eye tissues.J. Neurochem. 34, 69–75.PubMedCrossRefGoogle Scholar
  286. Marchionni M. A., Goodearl A. D., Chen M. S., Bermingham-McDonogh O., Kirk C., Hendricks M., Danehy F., Misumi D., Sudhalter J., Kobayashi K., et al. (1993) Glial growth factors are altenatively spliced erbB2 ligands expressed in the nervous system.Nature 362, 312–318.PubMedCrossRefGoogle Scholar
  287. Marinesco G. (1896) Sur les phenomenes de reparation dans les centres nerveux apres la section des nerfs peripheriques.Compt. Rendu. Soc. Biol. 111, 930.Google Scholar
  288. Martini R. (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves.J. Neurocytol. 23, 1–28.PubMedCrossRefGoogle Scholar
  289. Martini R. and Schachner M. (1986) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and mAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve.J. Cell Biol. 103, 2439–2448.PubMedCrossRefGoogle Scholar
  290. Martini R. and Schachner M. (1988) Immunoelectron microscopic localization of neural cell adehsion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve.J. Cell Biol. 106, 1735–1746.PubMedCrossRefGoogle Scholar
  291. Martini R., Bollensen E., and Schachner M. (1988) Immunocytological localization of the major peripheral nervous system glycoprotein P0 and the L2/HNK-1 and L3 carbohydrate structures in developing and adult mouse sciatic nerve.Dev. Biol. 129, 330–338.PubMedCrossRefGoogle Scholar
  292. Martini R., Schachner M., and Faissner A. (1990) Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve.J. Neurocytol. 19, 601–616.PubMedCrossRefGoogle Scholar
  293. Martini R., Xin Y., Schmitz B., and Schachner M. (1992) The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves.Eur. J. Neurosci. 4, 628–639.PubMedCrossRefGoogle Scholar
  294. Martini R., Xin, Y., and Schachner M. (1994a) Restricted localization of L1 and N-CAM at sites of contact between Schwann cells and neurites in culture.Glia 10, 70–74.PubMedCrossRefGoogle Scholar
  295. Martini R., Schachner M., and Brushart T. M. (1994b) The l2/HNK-1 carbohydrate is preferentially expressed by previously motor axonassociated Schwann cells in reinnervated peripheral nerves.J. Neurosci. 14, 7180–7191.PubMedGoogle Scholar
  296. Martinou J. C., Martinou I., and Kato A. C. (1992) Cholinergic differentiation factor (CDF/LIF) promotes survival of silated rat embryonic motoneurons in vitro.Neuron 8, 737–744.PubMedCrossRefGoogle Scholar
  297. Masu Y., Wolf E., Holtmann B., Sendtner, M., Brem G., and Thoenen H. (1993) Disruption of the CNTF gene results in motor neuron degeneration.Nature 365, 27–32.PubMedCrossRefGoogle Scholar
  298. Matsuoka I., Meyer M., and Thoenen H. (1991) Cell-type-specific regulation of nerve growth factor (NGF) synthesis in nonneural cells: comparison of Schwann cells and other cell types.J. Neurosci. 11, 3165–3177.PubMedGoogle Scholar
  299. Matsunaga M., Hatta K., Nagafuchi A., and Takeichi M. (1988) Guidance of optic nerve fibres by N-cadherin adhesion molecules.Nature 334, 62–64.PubMedCrossRefGoogle Scholar
  300. Matteoli M., Balbi S., Sala C., Chini B., Cimino M., Vitadello M., and Fumagelli G. (1990) Developmentally regulated expression of calcitonin gene-related peptide at the mammalian neuromuscular junction.J. Mol. Neurosci. 2, 175–184.PubMedGoogle Scholar
  301. Mathew T. C. and Miller F. D. (1993) Induction of T alpha 1 alpha-tubulin mRNA during neuronal regeneration is a function of the amount of axon lost.Dev. Biol. 158, 467–474.PubMedCrossRefGoogle Scholar
  302. Matthews M. R. and Nelson V. H. (1975) Detachment of structurally intact nerve endings from chromatolytic neurones of rat superior cervical ganglion during the depression of synaptic transmission induced by post-ganglionic axotomy.J. Physiol. (Lond.) 245, 91–135.Google Scholar
  303. McCabe B. F. (1970) Facial nerve grafting.Plast. Recontr. Surg. 45, 70–75.Google Scholar
  304. McCachren S. S. and Lightner V.A. (1992) Expression of human tenascin in synovitis and its regulation by interleukin-1.Arthritis Rheum. 35, 1185–1196.PubMedCrossRefGoogle Scholar
  305. McCaffrey T. A., Falcone D. J., Brayton C. F., Agarwal L. A., Welt F. G. P., and Weksler B. (1989) Transforming growth factor-beta activity is potentiated by heparin via dissociation of the transforming factor-beta/alpha 2-macroglobulin inactive complex.J. Cell Biol. 109, 441–448.PubMedCrossRefGoogle Scholar
  306. McQuarrie I. G. and Lasek R. J. (1989) Transport of cytoskeletal elements from parent axons into regenerating daughter axons.J. Neurosci. 9, 436–446.PubMedGoogle Scholar
  307. McQuarrie I. G. (1985) Effect of a conditioning lesion on axonal sprout formation at nodes of Ranvier.J. Comp. Neurol. 231, 239–249.PubMedCrossRefGoogle Scholar
  308. Meakin S. O. and Shooter E. M. (1992) The nerve growth factor family of receptors.Trends Neurosci. 15, 323–331.PubMedCrossRefGoogle Scholar
  309. Meiri K. F., Willard, M., and Johnson M. I. (1988) Distribution and phosphorylation of the growth associated protein GAP 43 in regenerating sympathetic neurons in culture.J. Neurosci. 8, 2571–2581.PubMedGoogle Scholar
  310. Melville S., Sherburn T. E., and Coggeshall R. E. (1989) Preservation of sensory cells by placing stumps of transected nerve in an impermeable tube.Exp. Neurol. 105, 311–315.PubMedCrossRefGoogle Scholar
  311. Mendell L. M. (1995) Neurotrophic factors and the specification of neural function.Neuroscientist 1, 26–34.CrossRefGoogle Scholar
  312. Mews M. and Meyer M. (1993) Modulation of Schwann cell phenotype by TGF-β1: inhibition of P0 mRNA expression and downregulation of the low affinity NGF receptor.Glia 8, 208–217.PubMedCrossRefGoogle Scholar
  313. Meyer M., Matsuoka I., Wetmore C., Olson L., and Thoenen H. (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA.J. Cell Biol. 119, 45–54.PubMedCrossRefGoogle Scholar
  314. Miller R. J., Lasek R. J., and Katz M. J. (1987) Preferred microtubules for vesicle transport in lobster axons.Science 235, 220–222.PubMedCrossRefGoogle Scholar
  315. Miller F. D., Tetzlaff W., Bisby M. A., Fawcett J. W., and Milner R. J. (1989) Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha I, during nerve regeneration in adult rats.J. Neurosci. 9, 1425–1463.Google Scholar
  316. Millesi H. (1990) Progress in peripheral nerve reconstruction.World J. Surg. 14, 733–747.PubMedCrossRefGoogle Scholar
  317. Mirsky R., Jessen K. R., Schachner M., and Goridis C. (1986) Distribution of the adhesion molecules NCAM and L1 on peripheral neurons and glia in the adult rat.J. Neurocytol. 15, 795–815.CrossRefGoogle Scholar
  318. Moix L. J., Greeson D. M., Armstrong D. M., and Wiley R. G. (1991) Separate signals mediate hypoglossal motor neuron response to axonal injury.Brain Res. 564, 176–180.PubMedCrossRefGoogle Scholar
  319. Morgan L., Jessen K. R., and Mirsky R. (1991) The effect of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (p0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition.J. Cell Biol. 112, 457–467.PubMedCrossRefGoogle Scholar
  320. Morris J. H., Hudson A. R., and Weddell G. A. (1972) A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. II. The development of the “regenerating unit.”Z. Zellforschung 124, 103–130.Google Scholar
  321. Muesch A., Hartmann E., Rohde K., Rubartelli A., Sitia R., and Rapaport T. A. (1990) A novel pathway for secretory protein?Trends Biochem. Sci. 15, 86–88.PubMedCrossRefGoogle Scholar
  322. Mukhopadhyay G., Doherty P., Walsh F. S., Crocker P. R., and Filbin M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration.Neuron 13, 757–767.PubMedCrossRefGoogle Scholar
  323. Murphy P. G., Grondin J., Altares M., and Richardson P. M. (1995) Induction of interleukin-6 in axotomized sensory neurons.J. Neurosci. 15, 5130–5138.PubMedGoogle Scholar
  324. Mustoe T. A., Pierce G. F., Thomason A., Gramates P., Sporn M. B., and Deuel T. F. (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta.Science 237, 1333–1336.PubMedCrossRefGoogle Scholar
  325. Nadim W., Anderson P. N., and Turmaine M. (1990) The role of Schwann cells and basal lamina tubes in the regeneration of axons through long lengths of freeze-killed nerve grafts.Neuropathol. Appl. Neurobiol. 16, 411–421.PubMedGoogle Scholar
  326. Nathaniel E. L. and Pease D. C. (1963a) Degenerative changes in rat dorsal roots during Wallerian degeneration.J. Ultrastruct. Res. 9, 511–532.CrossRefGoogle Scholar
  327. Nathaniel E. J. and Pease D. C. (1963b) Regenerative changes in rat dorsal roots following Wallerian degeneration.J. Ultrastruct. Res. 9, 533–549.CrossRefGoogle Scholar
  328. Near S. L., Whalen R., Miller J. A., and Ishii D. N. (1992) Insulin-like growth factor II stimulates motor nerve regeneration.Proc. Natl. Acad. Sci. USA 89, 11,716–11,720.CrossRefGoogle Scholar
  329. Neff N. T., Prevette D., Houenou L. J., Lewis M. E., Glicksman M. A., Yin Q. W., and Oppenheim R. W. (1993) Insulin-like growth factor: putative muscle-derived trophic agents that promote motoneuron survival.J. Neurobiol. 24, 1578–1588.PubMedCrossRefGoogle Scholar
  330. Neuberger T. J. and Cornbrooks C. J. (1989) Transient modulation of Schwann cell antigens after peripheral nerve transection and subsequent regeneration.J. Neurocytol. 18, 695–710.PubMedCrossRefGoogle Scholar
  331. Neufeld G., Gospodarowicz D., Dodge L., and Fujil D. K. (1987) Heparin modulation of the neurotrophic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells.J. Cell Biol. 131, 131–140.Google Scholar
  332. Neugebauer K. M., Tomaselli K. J., Lilien J., and Reichardt L. F. (1988) N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro.J. Cell Biol. 107, 1177–1187.PubMedCrossRefGoogle Scholar
  333. Newman J. P., Verity A. N., Hawatmeh S., Fee W. E. Jr., and Terris D. J. (1996) Ciliary neurotrophic factors enhance peripheral nerve regeneration.Arch. Otolaryngol. 122, 399–403.Google Scholar
  334. Ng S. B., Tan Y. H., and Guy G. R. (1994) Differential induction of the interleukin-6 gene by tumor necrosis factor and interleukin-1.J. Biol. Chem. 269, 19,021–19,027.Google Scholar
  335. Nieke J. and Schachner M. (1985) Expression of neural cell adhesion molecules, L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve.Differentiation 30, 141–151.PubMedCrossRefGoogle Scholar
  336. Nissl F. (1892) Über die Veränderungen der Ganglienzellen am Facialis-kern des Kaninchens nach Aureissung der Nerven.Allg. Z. Psychiat. 48, 197,198.Google Scholar
  337. Noback C. R., Husby J., Girado J. M., Basett C. A. L., and Campbell J. B. (1958) Neural regeneration across long gaps in mammalian peripheral nerves: early morphological findings.Anat. Rec. 131, 633–647.CrossRefGoogle Scholar
  338. Oderfold-Nowak B. and Niemierko S. (1969) Synthesis of nucleic acids in the Schwann cells as the early cellular response to nerve injury.J. Neurochem. 16, 235–248.PubMedCrossRefGoogle Scholar
  339. Olsson T., Kelic S., Edlund C., Bakhiest M., Hojeberg B., van der Meide P., Lundahl A., and Kristenson K. (1994) Neuronal interferon-gamma immunoreactive molecule: bioactivities and purification.Eur. J. Immunol. 24, 308–314.PubMedCrossRefGoogle Scholar
  340. Oppenheim R. W., Prevette D., Yan Q. W., Collins F., and MacDonald J. (1991) Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor.Science 251, 1616–1618.PubMedCrossRefGoogle Scholar
  341. Oppenheim R. W., Q-Wei Y., Prevette D., and Yan Q. (1992) Brain-derived neurotrophic factor rescues developing avian motor neurons from cell death.Nature 360, 755–757.PubMedCrossRefGoogle Scholar
  342. Oppenheim R. W., Houenou L. J., Johnson J. E., Line L. F. H., Li L., Lo A. C., Newsom A. L., Prevette D. M., and Wang S. (1995) Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF.Nature 373, 344–346.PubMedCrossRefGoogle Scholar
  343. Osawa T., Ide C., and Tohyama K. (1986) Nerve regeneration through allogenic nerve grafts in mice.Arch. Histol. Jpn. 49, 69–81.PubMedGoogle Scholar
  344. Otto D., Unsicker K., and Grothe C. (1987) Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult dorsal root ganglia.Neurosci. Lett. 83, 156–160.PubMedCrossRefGoogle Scholar
  345. Patterson P. H. (1992) The emerging neuropoietic cytokine family: first CDF/LIF, CTNF and IL-6; next ONC, GCSF?Curr. Opinion Neurobiol. 2, 94–97.CrossRefGoogle Scholar
  346. Pearson C. A. D., Shibabhara S., Hofsteenge J., and Chiquet-Ehrismann R. (1988) Tenascin: cDNA cloning and induction by TGF-beta.EMBO J. 7, 2977–2982.PubMedGoogle Scholar
  347. Pellegrino R. G. and Spencer P. S. (1985) Schwann cell mitosis in response to regenerating peripheral axons in vivo.Brain Res. 342, 16–25.CrossRefGoogle Scholar
  348. Pellegrino R. G., Politis M. J., Ritchie J. M., and Spencer P. S. (1986) Events in degenerating cat peripheral nerve: induction of Schwann cell S phase and its relation to nerve fiber degeneration.J. Neurocytol. 15, 17–28.PubMedCrossRefGoogle Scholar
  349. Peroncito A. (1907) Die Regeneration der Nerven.Zieglers. Beitr. Path. Und. Path. Anat. 42, 354.Google Scholar
  350. Perry G. W., Kryanek S. R., and Wilson D. L. (1983) Protein synthesis and fast axonal transport during regeneration of dorsal roots.J. Neurochem. 40, 1590–1598.PubMedCrossRefGoogle Scholar
  351. Perry V. H., Brown M. C., and Gordon S. (1987) The macrophage response to central and peripheral nerve injury: a possible role for macrophages in regeneration.J. Exp. Med. 165, 1218–1233.PubMedCrossRefGoogle Scholar
  352. Perry V. H., Brown M. C., Lunn E. R., Tree P., and Gordon S. (1990) Evidence that very slow wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve.Eur. J. Neurosci. 2, 802–808.PubMedCrossRefGoogle Scholar
  353. Perry V. H. and Brown M. C. (1992) Macrophages and nerve regeneration.Curr. Opinion Neurobiol. 2, 679–682.CrossRefGoogle Scholar
  354. Perry V. H., Brown M. C., and Andersson P.-B. (1993) Macrophage responses to central and peripheral nerve injury.Advances in Neurology, vol. 59: Neural Injury and Regeneration (Seil F. J., ed.), Raven, New York, pp. 309–314.Google Scholar
  355. Perry V. H., Tsao J. W., Feam S., and Brown M. C. (1995) Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice.Eur. J. Neurosci. 7, 271–280.PubMedCrossRefGoogle Scholar
  356. Pestronk A., Drachman D. B., and Griffen J. W. (1980) Effects of aging on nerve sprouting and regeneration.Exp. Neurol. 70, 65–80.PubMedCrossRefGoogle Scholar
  357. Petrov T., You S., Cassar S. L., Tetzlaff W., and Gordon T. (1996a) Cytoskeletal protein expression in long-term axotomized facial and sciatic motoneurons.Soc. Neurosci. Abstract 22, 723.1.Google Scholar
  358. Petrov T., Chung P. H., and Gordon T. (1996b) Macrophage invasion of injured peripheral nerves and their role in regeneration.Can. J. Pharm. Physiol. A. xxvii, 1996.Google Scholar
  359. Pincus D. W., DiCicco-Bloom E. M., and Black I. B. (1990) Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts.Nature 343, 564–567.PubMedCrossRefGoogle Scholar
  360. Rabizadeh S., Oh J., Zhong L. T., Yang J., Bitler C. M., Butcher L. L., and Bredesen D. E. (1993) Induction of apoptosis by the low-affinity NGF receptor.Science 261, 345–348.PubMedCrossRefGoogle Scholar
  361. Raff M. C., Abney E., Brookes J. P., and Hornby-Smith A. (1978) Schwann cell growth factors.Cell 15, 813–822.PubMedCrossRefGoogle Scholar
  362. Raivich G., Zimmermann A., and Sutter A. (1985) The spatial and temporal pattern of bNGF receptor expression in the developing chick embryo.EMBO J. 4, 637–644.PubMedGoogle Scholar
  363. Raivich G. and Kreutzberg G. W. (1987a) Expression of growth factor receptors in injured nervous tissue. I. Axotomy leads to a shift in the cellular distribution of specific B-nerve growth factor binding in the injured and regenerating PNS.J. Neurocytol. 16, 689–700.PubMedCrossRefGoogle Scholar
  364. Raivich G. and Kreutzberg G. W. (1987b) Expression of growth factor receptors in injured nervous tissue. II Induction of specific platelet-derived growth factor binding in the injured PNS is associated with a breakdown in the blood-nerve barrier and endoneurial interstitial oedema.J. Neurocytol. 16, 701–711.PubMedCrossRefGoogle Scholar
  365. Raivich G., Hellweg R., and Kreutzberg G. W. (1991) NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration.Neuron 7, 151–164.PubMedCrossRefGoogle Scholar
  366. Raivich G. and Kreutzberg G. W. (1993) Peripheral nerve regeneration: role of growth factors and their receptors.Int. J. Dev. Neurosci. 11, 311–324.PubMedCrossRefGoogle Scholar
  367. Ranson S. W. (1912) Degeneration and regeneration of nerve fibres.J. Comp. Neurol. 22, 487–546.CrossRefGoogle Scholar
  368. Rao M. S., Sun Y, Escary J. L., Perreau J., Tresser S., Patterson P. H., Zigmond R. E., Brulet P., and Landis S. C. (1993) Leukaemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons.Neuron 11, 1175–1185.PubMedCrossRefGoogle Scholar
  369. Ratner N., Hong D., Lieberman M. A., Bunge R. P., and Claser L. (1988) The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein.Proc. Natl. Acad. Sci. USA 85, 6992–6996.PubMedCrossRefGoogle Scholar
  370. Recio-Pinto F., Rechter M. M., and Ishii D. N. (1986) Effects of insulin, insulin-like growth factor II and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons.J. Neurosci. 6, 1211–1219.PubMedGoogle Scholar
  371. Reichardt L. F. and Tomaselli K. (1991) Extracellular matrix molecules and their receptors: functions in neural development.Ann. Rev. Neurosci. 14, 531–570.PubMedCrossRefGoogle Scholar
  372. Reichert F, Saada A., and Rotshenker S. (1994) Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2.J. Neurosci. 14, 3231–3245.PubMedGoogle Scholar
  373. Reichert F., Levitzky R., and Rotzhenker S. (1996) Interleukin 6 in intact and injured mouse peripheral nerves.Eur. J. Neurosci. 8, 530–535.PubMedCrossRefGoogle Scholar
  374. Remsen L. G., Strain G. M., Newman M. J., Satterlee N., and Daniloff J. K. (1990) Antibodies to the neural cell adhesion molecule disrupt functional recovery in injured nerves.Exp. Neurol. 110, 268–273.PubMedCrossRefGoogle Scholar
  375. Reynolds M. L. and Woolf C. J. (1993) Reciprocal Schwann cell-axon interactions.Curr. Opinion Neurobiol. 3, 683–693.CrossRefGoogle Scholar
  376. Rich K. M., Luszcynski J. R., Obborne P. A., and Johnson E. M. Jr. (1987) Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury.J. Neurocytol. 16, 261–268.PubMedCrossRefGoogle Scholar
  377. Rich K. M., Alexander T. D., Pryor J. C., and Hollowell J. P. (1989a) Nerve growth factor enhances regeneration through silicone chambers.Exp. Neurol. 105, 162–170.PubMedCrossRefGoogle Scholar
  378. Rich K. M., Disch S. P., and Eichiler M. E. (1989b) The influence of regeneration and nerve growth factor on neuronal cell body reaction to injury.J. Neurocytol. 18, 567–569.CrossRefGoogle Scholar
  379. Richardson P. M. (1991) Neurotrophic factors in regeneration.Curr. Opinion Neurobiol. 1, 401–406.CrossRefGoogle Scholar
  380. Richardson P. M. (1994) Ciliary neurotrophic factor: a review.Pharmcol. Therapeutics 63, 187–198.CrossRefGoogle Scholar
  381. Richardson P. M. and Ebendal T. (1982) Nerve growth activities in rat peripheral nerve.Brain Res. 246, 57–64.PubMedCrossRefGoogle Scholar
  382. Ridley A. J., Davis J. B., Stoobant P., and Land H. (1989) Transforming growth factors-Beta1 and Beta2 are mitogens for culture Schwann cells.J. Cell Biol. 109, 3419–3424.PubMedCrossRefGoogle Scholar
  383. Rifkin D. B. and Moscatelli D. (1989) Recent development in the cell biology of basic fibroblast growth factor.J. Cell Biol. 109, 1–6.PubMedCrossRefGoogle Scholar
  384. Risling M., Aldskogius H., and Hildebrand C. (1983) Effects of sciatic nerve crush on the L7 spinal roots and dorsal root ganglia in kittens.Exp. Neurol. 79, 176–187.PubMedCrossRefGoogle Scholar
  385. Roberts A. B., Flanders K. C., Heine U. I., Jakowlew S., Kondaiah P., Kim S. J., and Sporn M. B. (1990) Transforming growth factor-beta: multifunctional regulator of differentiation and development.Phil. Trans. Roy. Soc. Lond.—Series B: Biol. Sci. 327, 145–154.CrossRefGoogle Scholar
  386. Rogister B., Delree P., Leprince P., Martin D., Sadzot C., Malgrange B., Munaut C., Rigo J. M., Lefebvre P. P., Octave J.-N., Schoenen J., and Moonen G. (1993) Transforming growth factor b as a neuroglial signal during peripheral nervous system response to injury.J. Neurosci. Res. 34, 32–43.PubMedCrossRefGoogle Scholar
  387. Rohlmann A., Laskawi R., Hofer A., Dermeitzel R., and Wolff J. R. (1994) Astrocytes as rapid sensors of peripheral axotomy in the facial nucleus of rats.NeuroReport 5, 409–412.PubMedCrossRefGoogle Scholar
  388. Rossiter J. P., Riopelle R. J., and Bisby M. A. (1996) Axotomy-induced apoptotic death of neonatal rat facial motoneurons: time course analysis and relation to NADPH-Diaphorase activity.Exp. Neurol. 138, 33–44.PubMedCrossRefGoogle Scholar
  389. Rotshenker S., Aamar S., and Barak V. (1992) Interleukin-1 activity in lesioned peripheral nerve.J. Neuroimmunol. 39, 75–80.PubMedCrossRefGoogle Scholar
  390. Roytta M. and Salonen V. (1988) Long-term endoneurial changes after nerve transection.Acta Neuropathol. (Berl.) 76, 35–45.CrossRefGoogle Scholar
  391. Rutishauser U. and Jessell T. M. (1988) Cell adhesion molecules in vertebrate neural development.Physiol. Rev. 68, 819–857.PubMedGoogle Scholar
  392. Rutishauser U. and Landmesser L. (1991) Polysialic acid on the surface of axons regulates patterns of normal and activity-dependent innervation.Trends Neurosci. 14, 528–532.PubMedCrossRefGoogle Scholar
  393. Sahenk Z., Seharaseyon J., and Mendell J. R. (1994) CNTF potentiates peripheral nerve regeneration.Brain Res. 655, 246–250.PubMedCrossRefGoogle Scholar
  394. Said S. I. and Mutt V. (1970) Potent peripheral and splanchnic vasodilator peptide from normal gut.Nature 225, 863,864.PubMedCrossRefGoogle Scholar
  395. Sala C., Andreose J. S., Fumagalli G., and Lomo T. (1995) Calcitonin Gene-related peptide: possible role in the formation and maintenance of neuromuscular junctions.J. Neurosci. 15, 520–528.PubMedGoogle Scholar
  396. Salonen V., Lehto M., Kalimo H., Penttinen R., and Aro H. (1985) Changes in intramuscular collagen and fibronectin in denervation atrophy.Muscle Nerve 8, 124–131.CrossRefGoogle Scholar
  397. Salonen V., Peltonen J., Roytta M., and Virtanen I. (1987) Laminin in traumatized peripheral nerve: basement membrane changes during degeneration and regeneration.J. Neurocytol. 16, 713–720.PubMedCrossRefGoogle Scholar
  398. Salonen V., Aho H., Roytta M., and Peltonen J. (1988) Quantification of Schwann cells and endoneurial fibroblast-like cells after experimental nerve trauma.Acta Neuropathol. 75, 331–336.PubMedCrossRefGoogle Scholar
  399. Santos P. M., Winterowd J. G., Allen G. G., Bothwell M. A., and Rubel E. W. (1991) Nerve growth factor: increased angiogenesis without improved nerve regeneration.Otolaryngol.—Head Neck Surg. 105, 12–25.PubMedGoogle Scholar
  400. Sasahara M., Fries J. W., Raines E. W., Gorwn A. M., Westrum L. E., Frosch M. P., Bonthron D. E., Ross R., and Collins T. (1991) PDGF1 B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model.Cell 64, 217–227.PubMedCrossRefGoogle Scholar
  401. Saunders N. R. (1972) Lack of effect of nerve growth factor on peripheral sensory nerve regeneration, inNerve Growth Factor and Its Antiserum (Zaimis E. and Knight J., eds.), Athlone, London, pp. 116–122.Google Scholar
  402. Schachner M., Antonicek H., Fahrig T., Faissner A., Fishcer G., Kunemund V., Martini R., Meyer A., Persohn E., Pollerberg E., Probstemeier R., Sadoul K., Dadoul R., Seilheimer B., and Thor G. (1990) Families of cell adhesion molecules, inMorphoregulatory Molecules (Edelman G. M., Cunningham B. A., and Thiery J. P., eds.), Wiley, New York, pp. 443–468.Google Scholar
  403. Schafer M., Fruttiger M., Montag D., Schachner M., and Martini R. (1996) Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice.Neuron 16, 1107–1113.PubMedCrossRefGoogle Scholar
  404. Schecterson L. C. and Bothwell M. (1992) Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons.Neuron 9, 449–463.PubMedCrossRefGoogle Scholar
  405. Scherer S. S. and Easter S. S. (1984) Degenerative and regenerative changes in the trochlear nerve of goldfish.J. Neurocytol. 13, 519–565.PubMedCrossRefGoogle Scholar
  406. Scherer S. S., Kamholz J., and Jakowlew S. B. (1993) Axons modulate the expression of transforming growth factor-beta in Schwann cells.Glia 8, 265–276.PubMedCrossRefGoogle Scholar
  407. Schmalbruch H. (1984) Motoneuron death after sciatic nerve section in newborn rats.J. Comp. Neurol. 224, 252–258.CrossRefPubMedGoogle Scholar
  408. Schreiber R. C., Shadiack A. M., Bennett T. A., Sedwick C. E., and Zigmond R. E. (1995) Changes in the macrophage population of the rat superior cervical ganglion after postganglionic nerve injury.J. Neurobiol. 27, 141–153.PubMedCrossRefGoogle Scholar
  409. Schroder J. M., May R., and Weis J. (1993) Perineurial cells are the first to traverse gaps in peripheral nerves in silicone tubes.Clin. Neurol. Neurosurg. 95(Suppl.), S78-S83.PubMedCrossRefGoogle Scholar
  410. Schwab M. E. and Thoenen H. (1985) Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors.J. Neurosci. 5, 2415–2423.PubMedGoogle Scholar
  411. Schwartz M. A. and Ingber D. E. (1994) Integrating with integrins.Mol. Cell Biol. 5, 389–393.Google Scholar
  412. Seddon H. (1975)Surgical Disorders of the Peripheral Nerves. 2nd ed., Churchill Livingstone, New York.Google Scholar
  413. Seilheimer B. and Schachner M. (1987) Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor.EMBO J. 6, 1611–1616.PubMedGoogle Scholar
  414. Seilheimer B. and Schachner M. (1988) Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture.J. Cell Biol. 107, 341–351.PubMedCrossRefGoogle Scholar
  415. Sendtner M., Kreutzberg G. W., and Thoenen H. (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy.Nature 345, 440,441.PubMedCrossRefGoogle Scholar
  416. Sendtner M. B., Arakawa Y., Stockli K. A., Kreutzberg G. W., and Thoenen H. (1991) Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival.J. Cell Sci. 15(Suppl.), 103–109.Google Scholar
  417. Sendtner M., Holtmann B., Kolbeck R., Thoenen H., and Barde Y.-A. (1992a) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section.Nature 360, 757–758.PubMedCrossRefGoogle Scholar
  418. Sendtner M., Stockli K. A., and Thoenen H. (1992b) Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration.J. Cell Biol. 118, 139–148.PubMedCrossRefGoogle Scholar
  419. Seniuk N., Altares M., Dunn R., and Richardson P. M. (1992) Decreased synthesis of ciliary neurotrophic factor in degenerating peripheral nerves.Brain Res. 572, 300–302.PubMedCrossRefGoogle Scholar
  420. Sephel G. C., Burrous B. A., and Kleinman H. A. (1989) Laminin neural activity and binding proteins.Dev. Neurosci. 11, 313–331.PubMedGoogle Scholar
  421. Shaw G. and Bray D. (1977) Movement and extension of isolated growth cones.Exp. Cell Res. 104, 55–62.PubMedCrossRefGoogle Scholar
  422. Shawe G. D. H. (1955) On the number of branches formed by regenerating nerve fibres.Br. J. Surg. 42, 474–488.PubMedCrossRefGoogle Scholar
  423. Shea T. B., Perrone-Bizzozero N. I., Beermann M. L., and Benowitz L. I. (1991) Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neurogenesis.J. Neurosci. 11, 1685–1690.PubMedGoogle Scholar
  424. Shibuya Y., Mizoguchi A., Tekeichi M., Schimada K., and Ide C. (1995) Localization of N-cadherin in the normal and regenerating nerve fibers of the chicken peripheral nervous system.Neuroscience 67, 253–261.PubMedCrossRefGoogle Scholar
  425. Shy M. E., Shi Y., Wrabetz L., Kamholz J., and Scherer S. S. (1996) Axon-Schwann cell interactions regulate the expression of c-jun in Schwann cells.J. Neurosci. Res. 43, 511–525.PubMedCrossRefGoogle Scholar
  426. Siironen J., Collan Y., and Roytta M. (1994) Axonal reinnervation does not influence Schwann cell proliferation after rat sciatic nerve transection.Brain Res. 654, 303–311.PubMedCrossRefGoogle Scholar
  427. Siironen J., Vuorinen V., Taskinen H. S., and Röyttá M. (1995) Axonal regeneration into chronically denervated distal stump 1. Electron microscope studies.Acta Neuropathol. 89, 209–218.PubMedCrossRefGoogle Scholar
  428. Simpson S. A. and Young J. Z. (1945) Regenerating of fibre diameter after cross-union of visceral and somatic nerves.J. Anat. 79, 48–64.PubMedGoogle Scholar
  429. Sjoberg J. and Kanje M. (1989) Insulin-like growth factor (IGF-I) as a stimulator of regeneration in the freeze-injured rat sciatic nerve.Brain Res. 485, 102–108.PubMedCrossRefGoogle Scholar
  430. Sjoberg J. and Kanje M. (1990) The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect.Brain Res. 529, 79–84.PubMedCrossRefGoogle Scholar
  431. Sjoberg J., Kanje M., and Edstrom A. (1988) Influence of nonneuronal cells on regeneration of the rat sciatic nerve.Brain Res. 453, 221–226.PubMedCrossRefGoogle Scholar
  432. Skene J. H. P. and Willard M. (1981) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.J. Cell Biol. 89, 96–103.PubMedCrossRefGoogle Scholar
  433. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., and Freeman J. A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes.Science 233, 783–786.PubMedCrossRefGoogle Scholar
  434. Skene J. H. P. (1989) Axonal growth-associated proteins.Ann. Rev. Neurosci. 12, 127–156.PubMedCrossRefGoogle Scholar
  435. Sketelj J., Bresjanac M., and Popovic M. (1989) Rapid growth of regenerating axons across the segments of sciatic nerve devoid of Schwann cells.J. Neurosci. Res. 24, 153–162.PubMedCrossRefGoogle Scholar
  436. Smeyne R. J., Klein R., Schnapp A., Long L. K., Bryant S., Lewin A., Lira S. A., and Barbacid M. (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted trk/NGF receptor gene.Nature 368, 246–249.PubMedCrossRefGoogle Scholar
  437. Smith R. S. (1980) The short-term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons.J. Neurocytol. 9, 39–65.PubMedCrossRefGoogle Scholar
  438. Smits A., Kato M., Westermark B., Nister M., Heldin C. H., and Funa K. (1991) Neurotrophic activity of platelet-derived growth factor (PDGF) rat neuronal cells possess functional PDGF β-type receptors and respond to PDGF.Proc. Natl. Acad. Sci. USA 88, 8159–8163.PubMedCrossRefGoogle Scholar
  439. Snider W. D. and Thanedar S. (1989) Target dependence of hypoglossal motor neurons during development and in maturity.J. Comp. Neurol. 279, 489–497.PubMedCrossRefGoogle Scholar
  440. Snider W. D., Elliott J. L., and Yan Q. (1992) Axotomy-induced neuronal death during development.J. Neurosci. Res. 37, 278–286.Google Scholar
  441. Snider W. D. (1994) Function of the neurotrophins during nervous system development: what the knockouts are teaching us.Cell 77, 627–638.PubMedCrossRefGoogle Scholar
  442. Snyder R. E., Chen H., and Smith R. S. (1988) Structural and functional properties of the junction between the parent and regenerating portions of myelinated axons, inThe Current Status of Peripheral Nerve Regeneration, Neurology and Neurobiology, vol. 38 (Gordon T., Stein R. B., and Smith, P. A., eds.), Liss, New York, pp. 84,85.Google Scholar
  443. Spector J. G., Lee P., Derby A., Frierdich G. E., Neised G., and Roufa D. G. (1993) Rabbit facial nerve regeneration in NGF-containing silastic tubes.Laryngoscope 103, 548–558.PubMedGoogle Scholar
  444. Springer J. E., Mu X., Bergmann L. W., and Trojanowski J. Q. (1994) Expression of GDNF mRNA in rat and human nervous tissue.Exp. Neurol. 127, 167–170.PubMedCrossRefGoogle Scholar
  445. Sporn M. B. and Roberts A. B. (1986) Peptide growth factors and inflammation, tissue repair and cancer.J. Clin. Invest. 78, 329–332.PubMedGoogle Scholar
  446. Stahl J., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pelligrini S., Ihle J. J., and Yancopoulos G. D. (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components.Science 263, 92–95.PubMedCrossRefGoogle Scholar
  447. Stewart H. J. S., Eccleston P. A., Jessen K. R., and Mirsky R. (1991) Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth.J. Neurosci. Res. 30, 346–352.PubMedCrossRefGoogle Scholar
  448. Stockli K. A., Lottspeich F., Sendtner M., Masiakowsky M., Carroll P., Gotz R., Lindholm D., and Thoenen H. (1989) Molecular cloning, expression and regional expression of rat ciliary neurotrophic factor.Nature 342, 920–923.PubMedCrossRefGoogle Scholar
  449. Stoll G., Griffin J. W., Li C. Y., and Trapp B. D. (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation.J. Neurocytol. 18, 671–683.PubMedCrossRefGoogle Scholar
  450. Stoll G., Jung S., Jander S., van der Meide P., and Hartung H. P. (1993) Tumor necrosis factor-alpha in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system.J. Neuroimmunol. 45, 175–182.PubMedCrossRefGoogle Scholar
  451. Streit W. J., Graeber M. B., and Kreutzberg G. W. (1989a) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system.J. Neuroimmunol. 21, 117–123.PubMedCrossRefGoogle Scholar
  452. Streit W. J., Graeber M. B., and Kreutzberg G. W. (1989b) Expression of 1a antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury.Exp. Neurol. 105, 115–126.PubMedCrossRefGoogle Scholar
  453. Strittmatter S. M., Fankhauser C., Huang P. L., Mashimo H., and Fishman M. C. (1995) Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43.Cell 80, 445–452.PubMedCrossRefGoogle Scholar
  454. Stromberg I., Bjorklund L., Johansson M., Tomac A., Collins F., Olson L., Hoffer B., and Humpel C. (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo.Exp. Neurol. 124, 401–412.PubMedCrossRefGoogle Scholar
  455. Sumner B. E. H. (1975) A quantitative analysis of the response of presynaptic boutons to post synaptic motor axotomy.Exp. Neurol. 46, 605–615.PubMedCrossRefGoogle Scholar
  456. Sunderland S. (1978)Nerve and Nerve Injuries. Edinburgh, Livingstone.Google Scholar
  457. Sunderland S. and Bradley K. C. (1950) Endoneurial tube shrinkage in the distal segment of a severed nerve.J. Comp. Neurol. 93, 411–420.PubMedCrossRefGoogle Scholar
  458. Tanaka S. and Koike T. (1994) Vasoactive intestinal peptide suppresses neuronal cell death induced by nerve growth factor deprivation in rat sympathetic ganglion.Neuropeptides 26, 103–111.PubMedCrossRefGoogle Scholar
  459. Taniuchi M., Clark H. B., and Johnson E. M. Jr. (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy.Proc. Natl. Acad. Sci. USA 83, 4094–4098.PubMedCrossRefGoogle Scholar
  460. Taniuchi M., Clark H. B., Schweitzer J. B., and Johnson E. M. Jr. (1988) Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact and binding properties.J. Neurosci. 8, 664–681.PubMedGoogle Scholar
  461. Terzis J. K. (1987)Microreconstruction of Nerve Injuries. Saunders, Philadelphia.Google Scholar
  462. Tetzlaff W., Bisby M. A., and Kreutzberg G. W. (1988) Changes in cytoskeletal protein in the rat facial nucleus following axotomy.J. Neurosci. 8, 3181–3189.PubMedGoogle Scholar
  463. Tetzlaff W., Alexander S. W., Miller F. D., and Bisby M. A. (1991) Response of facial and rubrospinal neurons to axotomy—changes in messenger RNA expression for cytoskeletal proteins and GAP-43.J. Neurosci. 11, 2528–2544.PubMedGoogle Scholar
  464. Tetzlaff W., Leonard C. A., and Harrington K. C. (1992) Expression of neurotrophin receptor mRNAs in axotomized facial and rubrospinal neurons.Soc. Neurosci. Abstract 18, 546.3.Google Scholar
  465. Tetzlaff W., Leonard C., Krekoski C. A., Parhad I. M., and Bisy M. A. (1996) Reductions in motoneuronal neurofilament synthesis by successive axotomies: a possible explanation for the conditioning lesion effect on axon regeneration.Exp. Neurol. 139, 95–106.PubMedCrossRefGoogle Scholar
  466. Thomas C. K., Stein R. B., Gordon T., Lee R. G., and Elleker M. G. (1987) Patterns of reinnervation and motor unit recruitment in human hand muscles after complete ulnar and median nerve section and resuture.J. Neurol. Neurosurg. Psychiatry 50, 259–268.PubMedGoogle Scholar
  467. Thomas P. K. (1964) Changes in the endoneurial sheaths of peripheral myelinated nerve fibres during Wallerian degeneration.J. Anat. 98, 175–182.PubMedGoogle Scholar
  468. Thomas P. K. (1966) The cellular response to nerve injury. 1. The cellular outgrowth from the distal stump of transected nerve.J. Anat. 100, 287–303.PubMedGoogle Scholar
  469. Titmus M. J. and Faber D. S. (1990) Axotomy-induced alternations in the electrophysiological characteristics of neurons.Prog. Neurobiol. 35, 1–51.PubMedCrossRefGoogle Scholar
  470. Toft P. B., Fugleholm K., and Schmalbruch H. (1988) Axonal branching following crush lesions of peripheral nerves of rats.Muscle Nerve 11, 880–889.PubMedCrossRefGoogle Scholar
  471. Togari A., Dickens G., Kuzuya H., and Guroff G. (1985) The effects of fibroblast growth factor on PC12 cells.J. Neurosci. 5, 307–316.PubMedGoogle Scholar
  472. Toma J. G., Pareek S., Barker P., Mathew T. C., Murphy R. A., Acheson A., and Miller F. D. (1992) Spatiotemporal increases in epidermal growth factor receptors following peripheral nerve injury.J. Neurosci. 12, 2504–2515.PubMedGoogle Scholar
  473. Tomaselli K. J., Reichardt L. F., and Bixby J. L. (1986) Distinct molecular interactions mediate neuronal process outgrowth on nonneural cell surfaces and extracellular matrices.J. Cell Biol. 103, 2659–2672.PubMedCrossRefGoogle Scholar
  474. Tomaselli K. J., Neugebauer K. M., Bixby J. L., Lilien J., and Reichardt L. F. (1988) N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces.Neuron 1, 33–34.PubMedCrossRefGoogle Scholar
  475. Tornqvist E. and Aldskogius H. (1994) Motoneuron survival is not affected by the proximo-distal level of axotomy but by the possibility of regenerating axons to gain access to the distal nerve stump.J. Neurosci. Res. 39, 159–165.PubMedCrossRefGoogle Scholar
  476. Toyota B., Carbonetto S., and David S. (1990) A dual laminin/collagen receptor acts in peripheral nerve regeneration.Proc. Natl. Acad. Sci. USA 87, 1319–1322.PubMedCrossRefGoogle Scholar
  477. Trachtenberg J. T. and Thompson W. J. (1996) Schwann cell apoptosis at developing neuro-muscular junctions is regulated by glial growth factor.Nature 279, 174–177.CrossRefGoogle Scholar
  478. Trapp B. D., Hauer P., and Lemke G. (1988) Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells.J. Neurosci. 8, 3515–3521.PubMedGoogle Scholar
  479. Trupp M., Ryden M., Hornvall H., Funakoshi H., Timmusk T., Arenas E., and Ibanez C. F. (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons.J. Cell Biol. 130, 137–148.PubMedCrossRefGoogle Scholar
  480. Ulenkate H. J. L. M., Kaal E. C. A., Gispen W.-H., and Jennekens F. G. I. (1994) Ciliary neurotrophic factor improves muscle fibre reinnervation after facial nerve crush in young rats.Acta Neuropathol. 88, 558–564.PubMedCrossRefGoogle Scholar
  481. Unsicker K., Richert-Preibsch H., and Wewetzer K. (1992) Stimulation of neuron survival by basic FGF and CNTF is a direct effect and not mediated by nonneuronal cells: evidence form single cell cultures.Dev. Brain Res. 65, 285–288.CrossRefGoogle Scholar
  482. Vanden Noven S., Wallace N., Muccio D., Turtz A., and Pinter M. J. (1993) Adult spinal motoneurons remain viable despite prolonged absence of functional synaptic contact with muscle.Exp. Neurol. 123, 147–156.CrossRefGoogle Scholar
  483. Vaudano E., de Filepe C., Davies S. W., Lieberman A. R., and Hunt S. P. (1992) Expression of c-jun protein in Schwann cells depends on their environment.Soc. Neurosci. Abstract 18, 1302.Google Scholar
  484. Vejsada R., Sagot Y., and Kato A. C. (1995) Quantitative comparison of the transient rescue effects of neurotrophic factors on axotomized motoneurons in vivo.Eur. J. Neurosci. 7, 108–115.PubMedCrossRefGoogle Scholar
  485. Verdi J. M., Birren S. J., Ibasnez C. F., Persson H., Kaplan D. R., Bendetti M., Chao M. V., and Anderson D. J. (1994) p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells.Neuron 12, 733–745.PubMedCrossRefGoogle Scholar
  486. Verge V. M. K., Riopelle R. J., and Richardson P. M. (1989) Nerve growth factor receptors on normal and injured sensory neurons.J. Neurosci. 9, 914–922.PubMedGoogle Scholar
  487. Verge V. M. K., Tetzlaff W., Richardson P. M., and Bisby M. (1990) Correlation between GAP43 and nerve growth factor receptors in rat sensory neurons.J. Neurosci. 10, 926–934.PubMedGoogle Scholar
  488. Verge V. M. K., Merlio J. P., Grondin J., Ernfors P., Persson H., Riopelle R. J., Hokfelt T., and Richardson P. M. (1992) Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF.J. Neurosci. 12, 4011–4022.PubMedGoogle Scholar
  489. Verge V. M. K., Richardson P. M., Wiesenfeld-Hallin Z., and Hokfelt T. (1995) Differential influence of nerve growth factor on neuropeptide expressionin vivo: a novel role in peptide suppression in adult sensory neurons.J. Neurosci. 15, 2081–2096.PubMedGoogle Scholar
  490. Verge V. M. K., Gratto K. A., Karchewski L. A., and Richardson P. M. (1996) Neurotrophins and nerve injury in the adult.Phil. Trans. Roy. Soc. Lond. B. 351, 423–430.CrossRefGoogle Scholar
  491. Villegas-Perez M. P., Vidal-Sanz M., Bray G. M., and Aguayo A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats.J. Neurosci. 8, 265–280.PubMedGoogle Scholar
  492. Villiger P. M., Geng Y., and Lotz M. (1993) Induction of cytokine expression by leukaemia inhibitory factor.J. Clin. Invest. 91, 1575–1581.PubMedGoogle Scholar
  493. Vizoso A. D. and Young J. Z. (1948) Internode length and fibre diameter in developing and regenerating nerves.J. Anat. 82, 110–134.PubMedGoogle Scholar
  494. Vrbova G., Gordon G., and Jones R. (1995)Nerve Muscle Interactions, 2nd ed. Chapman and Hall, London.Google Scholar
  495. Vuorinen V., Siironen J., and Röyttá (1995) Axonal regeneration into chronically denervated distal stump. 2. Active expression of type I collagen mRNA in epineurium.Acta Neuropathol. 89, 219–226.PubMedCrossRefGoogle Scholar
  496. Wada T., Qian X., and Greene M. (1990) Intermolecular association of the p185neu protein and the EGF receptor modulates EGF receptor function.Cell 61, 1339–1347.PubMedCrossRefGoogle Scholar
  497. Wahl S. M., Hunt D. A., Wakefield L. M., McCartney-Francis N., Wahl L. M., Roberts A. B., and Sporn M. B. (1987) Transforming growth factor type B induces monocyte chemotaxis and growth factor production.Proc. Natl. Acad. Sci. USA 84, 5788–5792.PubMedCrossRefGoogle Scholar
  498. Walter M. A., Kurouglu R., Caulfield J. B., Vasconez L. O., and Thompson J. A. (1993) Enhanced peripheral nerve regeneration by acidic fibroblast growth factor.Lymphokine Cytokine Res. 12, 135–141.PubMedGoogle Scholar
  499. Wang G. Y., Hirai K., Shimada H., Taji S., and Zhong S. Z. (1992) Behavior of axons, Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts: effects of anti-laminin and anti-fibronectin antisera.Brain Res. 583, 216–226.PubMedCrossRefGoogle Scholar
  500. Watabe K., Fukada T., Tanaka J., Honda H., Toyohara K., and Sakai O. (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities.J. Neurosci. Res. 41, 279–290.PubMedCrossRefGoogle Scholar
  501. Watson W. E. (1974) Cellular responses to axotomy and to related procedures.Br. Med. Bull. 30, 112–115.PubMedGoogle Scholar
  502. Watson W. E. (1976)Cell Biology of Brain. Chapman and Hall, New York.Google Scholar
  503. Wehrle B. and Chiquet M. (1990) Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro.Development 110, 401–415.PubMedGoogle Scholar
  504. Weinberg H. J. and Spencer P. S. (1978) The fate of Schwann cells isolated from axonal contact.J. Neurocytol. 7, 555–569.PubMedCrossRefGoogle Scholar
  505. Weinmaster G. and Lemke G. (1990) Cell-specific cyclic AMP-mediated induction of the PDGF receptor.EMBO J. 9, 915–920.PubMedGoogle Scholar
  506. Weiss P. and Hiscoe H. B. (1948) Experiments on the mechanism of nerve growth.J. Exp. Zool. 107, 315–396.CrossRefPubMedGoogle Scholar
  507. Wekerle H., Schwab M., Lingington C., and Meyermann R. (1986) Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes.Eur. J. Immunol. 16, 1551–1557.PubMedCrossRefGoogle Scholar
  508. Wessells N. K., Johnson S. R., and Nuttall R. P. (1978) Axon initiation and growth cone regeneration in cultured motoneurons.Exp. Cell. Res. 117, 335–345.PubMedCrossRefGoogle Scholar
  509. White D. M. and Mansfield K. (1996) Vasoactive intestinal polypeptide and neuropeptide Y act indirectly to increase neurite outgrowth of dissociated dorsal root ganglion cells.Neuroscience 73, 881–887.PubMedCrossRefGoogle Scholar
  510. Williams L. R., Longo F. M., Powell H. C., Lundborg G., and Varon S. (1983) Spatial-temporal progression of peripheral nerve regeneration within a silicone chamber. Parameters for a bioassay.J. Comp. Neurol. 218, 460–470.PubMedCrossRefGoogle Scholar
  511. Williams L. R. and Varon S. (1985) Modification of fibrin matrix formation in situ enhances nerve regeneration in silicone chambers.J. Comp. Neurol. 231, 209–220.PubMedCrossRefGoogle Scholar
  512. Williams L. R., Danielsen N., Muller H., and Varon S. (1987) Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat.J. Comp. Neurol. 264, 284–290.PubMedCrossRefGoogle Scholar
  513. Wood S. J., Prichard J., and Sofroniew M. V. (1990) Re-expression of a developmental growth factor receptor after axonal injury recapitulates a developmental event in motor neurons: differential regulation when regeneration is allowed or prevented.Eur. J. Neurosci. 2, 650–657.PubMedCrossRefGoogle Scholar
  514. Wu W. (1993) Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry.Exp. Neurol. 120, 153–159.PubMedCrossRefGoogle Scholar
  515. Wu W., Mathew T. C. and Miller F. D. (1993) Evidence that the loss of homeostatic signals induces regeneration-associated alterations in neuronal gene expression.Dev. Biol. 158, 456–466.PubMedCrossRefGoogle Scholar
  516. Wujek J. R. and Lasek R. J. (1983) Correlation of axonal regeneration and slow flow component b in two branches of a single axon.J. Neurosci. 3, 243–251.PubMedGoogle Scholar
  517. Wyrwicka W. (1950) On the rate of regeneration of the rat sciatic nerve in white mouse.Acta Biol. Exp. 15, 147–153.Google Scholar
  518. Yan Q. and Johnson E. M. (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats.J. Neurosci. 8, 3481–3498.PubMedGoogle Scholar
  519. Yan Q., Elliott J., and Snider W. D. (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death.Nature 360, 753–755.PubMedCrossRefGoogle Scholar
  520. Yan Q., Metheson C., and Lopez O. T. (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons.Nature 373, 341–344.PubMedCrossRefGoogle Scholar
  521. Yankner B. A., Benowitz L. I., Wila-Komaroff L., and Neve R. L. (1990) Transfection of PC-12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration.Mol. Brain Res. 7, 39–44.PubMedCrossRefGoogle Scholar
  522. Yasuda T., Sobue G., Mitsuma T., and Takahasi A. (1988) Peptidergic and adrenergic regulation of the intracellular 3′,5′-cyclic adenosine monophosphate content in cultured rat Schwann cells.J. Neurol. Sci. 88, 315–325.PubMedCrossRefGoogle Scholar
  523. Yeh H.-J., Ruit K. G., Wang Y.-W., Parks W. C., Snider W. D., and Deuel T. F. (1991) PDGF-A chain gene is expressed by mammalian neurons during development and in maturity.Cell 64, 209–216.PubMedCrossRefGoogle Scholar
  524. Yip H. K., Rich K. M., Lampe P. A., and Johnson E. M. Jr. (1984) The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in the rat dorsal root ganglia.J. Neurosci. 4, 2986–2992.PubMedGoogle Scholar
  525. Yoshida K. and Gage F. H. (1992) Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines.Brain Res. 569, 14–25.PubMedCrossRefGoogle Scholar
  526. Yoshii S., Yamanuro T., Ito S., and Hayashi M. (1987) In vivo guidance of regenerating nerve by laminin-coated filaments.Exp. Neurol. 96, 469–473.PubMedCrossRefGoogle Scholar
  527. You S., Petrov T., Chung P. H., and Gordon T. (1997) The expression of low affinity nerve growth factor receptor in long-term denervated Schwann cells.Glia, in press.Google Scholar
  528. Young J. Z. (1948) Growth and differentiation of nerve fibres.Symp. Soc. Exp. Biol. Growth,2, 57–74.Google Scholar
  529. Zalewski A. A. and Gulati A. K. (1982) Evaluation of histocompatibility as a factor in the repair of nerve with a frozen nerve allograft.J. Neurosurg. 56, 550–554.PubMedGoogle Scholar
  530. Zelena J., Lubinska L., and Gutmann E. (1968) Accumulation of organelles at the ends of interrupted axons.Z. Zellforsch. Mikrosk. Anat. 91, 200–219.PubMedCrossRefGoogle Scholar
  531. Zigmond R. E., Hyatt-Sachs H., Mohney R. P., Schreiber R. C., Shadiack A. M., Sun Y., and Vaccariello S. A. (1997) Changes in neuropeptide phenotype after axotomy of adult peripheral neurons and the role of leukaemia inhibitory factor.Perspectives Dev. Neurobiol., in press.Google Scholar
  532. Zurn A. D., Winkel L., Menoud A., Djabali K., and Aebischer P. (1996) Combined effects of GDNF, BDNF, and CNTF on motoneuron differentiation in vitro.J. Neurosci. Res. 44, 133–141.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Susan Y. Fu
    • 1
  • Tessa Gordon
    • 2
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada
  2. 2.Department of Pharmacology and Division of NeuroscienceUniversity of AlbertaEdmontonCanada

Personalised recommendations