Molecular Neurobiology

, Volume 14, Issue 1–2, pp 19–35 | Cite as

The effects of interferon-γ on the central nervous system

  • Brian Popko
  • Joshua G. Corbin
  • Kristine D. Baerwald
  • Jeffrey Dupree
  • Annie M. Garcia


Interferon-gamma (IFN-γ) is a pleotropic cytokine released by T-lymphocytes and natural killer cells. Normally, these cells do not traverse the blood-brain barrier at appreciable levels and, as such, IFN-γ is generally undetectable within the central nervous system (CNS). Nevertheless, in response to CNS infections, as well as during certain disorders in which the CNS is affected, T-cell traffic across the blood-brain barrier increases considerably, thereby exposing neuronal and glial cells to the potent effects of IFN-γ. A large portion of this article is devoted to the substantial circumstantial and experimental evidence that suggests that IFN-γ plays an important role in the pathogenesis of the demyelinating disorder multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). Moreover, the biochemical and physiological effects of IFN-γ are discussed in the context of the potential consequences of such activities on the developing and mature nervous systems.

Index Entries

Cytokines demyelination neural development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti C., D'Urso D., and Levi G. (1996) Reversible inhibitory effects of interferon-γ and tumouar necrosis factor-α on oligodendroglial lineage cell proliferation and differentiation in vitro.Eur. J. Neurosci. 8, 1106–1116.PubMedCrossRefGoogle Scholar
  2. Aguet M., Dembic Z., and Merlin G. (1988) Molecular cloning and expression of the human interferon-γ receptor.Cell 55, 273–280.PubMedCrossRefGoogle Scholar
  3. Alvord E. C. Jr., Kies M. W., and Suckling A. J. (1984)Experimental Allergic Encephalomyelitis: A Useful Model for Multiple Sclerosis. Alan R. Liss, New York.Google Scholar
  4. Bach E. A., Tanner J. W., Marsters S., Ashkenazi A., Aguet M., Shaw A. S., and Schreiber R. D. (1996) Ligand-induced assembly and activation of the gamma interferon receptor in intact cells.Mol. Cell. Biol. 16, 3214–3221.PubMedGoogle Scholar
  5. Balasingam V., Tejada-Berges T., Wright E., Bouckova R., and Yong V. W. (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines.J. Neurosci. 14, 846–856.PubMedGoogle Scholar
  6. Barish M. E., Mansdorf N. B., and Raissdana S. S. (1991) Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons.Dev. Biol. 144, 412–423.PubMedCrossRefGoogle Scholar
  7. Beck J., Rondot L., Catinot L., Falcoff E., Kirchner H., and Wietzerbin J. (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations?Acta Neurol. Scand. 78, 318–323.PubMedGoogle Scholar
  8. Benveniste E. N. (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action.Cell Physiol. 32, C1-C16.Google Scholar
  9. Benveniste E. N. and Benos D. J. (1995) TNF-α and IFN-γ-mediated signal transduction pathways: effects on glial cell gene expression and function.FASEB J. 9, 1577–1584.PubMedGoogle Scholar
  10. Bergsteinsdottir K., Brennan A., Jessen K. R., and Mirsky R. (1992) In the presence of dexamethasone, γ interferon induces rat oligodendrocytes to express major histocompatibility complex class II molecules.Proc. Natl. Acad. Sci. USA 89, 9054–9058.CrossRefGoogle Scholar
  11. Billiau A., Heremans H., Vandekerckhove F., Dijkmans R., Sobis H., Meulepas E., and Carton H. (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-γ.J. Immunol. 140, 1506–1510.PubMedGoogle Scholar
  12. Birdsall H. H. (1991) Induction of ICAM-1 on human neural cells and mechanisms of neutrophil-mediated injury.Am. J. Pathol. 139, 1341–1350.PubMedGoogle Scholar
  13. Birmingham M. K., Sar M., and Stumpf W. E. (1984) Localization of aldosterone and corticosterone in the central nervous system, assessed by quantitative autoradiography.Neurochem. Res. 9, 333–350.PubMedCrossRefGoogle Scholar
  14. Bö L., Dawson T. M., Wesselingh S., Mörk S., Choi S., Kong P. A., Hanley D., and Trapp B. D. (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains.Ann. Neurol. 36, 778–786.PubMedCrossRefGoogle Scholar
  15. Booss J., Esiri M. M., and Tourtellotte W. W. (1983) Immunohistochemical analysis of T-lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis.J. Neurol. Sci. 62, 19–32.CrossRefGoogle Scholar
  16. Brosnan C. F., Litwak M. S., Schroeder C. E., Selmaj K., Raine C. S., and Arezzo J. C. (1989) Preliminary studies of cytokine-induced functional effects on the visual pathways in the rabbit.J. Neuroimmunol. 25, 227–239.PubMedCrossRefGoogle Scholar
  17. Calder V. L., Wolswijk G., and Noble M. (1988) The differentiation of 0–2A progenitor cells into oligodendrocytes is associated with a loss of inducibility of Ia antigens.Eur. J. Immunol. 18, 1195–1201.PubMedCrossRefGoogle Scholar
  18. Chang J. Y., Martin D. P., and Johnson E. M. Jr. (1990) Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation.J. Neurochem. 55, 436–445.PubMedCrossRefGoogle Scholar
  19. Chuong C. M. (1990) Differential roles of multiple adhesion molecules in cell migration: granule cell migration in cerebellum.Experientia 46, 892–899.PubMedCrossRefGoogle Scholar
  20. Collins A. R. (1995) Interferon g potentiates human coronavirus OC43 infection of neuronal cells by modulation of HLA class I expression.Immunol. Invest. 24, 977–986.PubMedGoogle Scholar
  21. Corbin J. G., Kelly D., Rath E. M., Baerwald K. D., Suzuki K., and Popko B. (1996) Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development.Mol. Cell. Neurosci. 7, 354–370.PubMedCrossRefGoogle Scholar
  22. Crone C. (1986) The blood-brain barrier; a modified tight epithelium, inThe Blood-Brain Barrier in Health and Disease (Suckling A. J., Rumsby M. G., and Bradbury M. W. B., eds.), Ellis Horwood, UK, pp. 17–40.Google Scholar
  23. Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., and Stewart T. A. (1993) Multiple defects of immune cell function in mice with disrupted interferon-γ genes.Science 259, 1739–1742.PubMedCrossRefGoogle Scholar
  24. Darnell J. E., Jr., Kerr I. M., and Stark G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science 264, 1415–1421.PubMedCrossRefGoogle Scholar
  25. David M. (1995) Transcription factors in interferon signaling.Pharmacol. Ther. 65, 149–161.PubMedCrossRefGoogle Scholar
  26. Dighe A. S., Farrar M. A., and Schreiber R. D. (1993) Inhibition of cellular responsiveness to interferon-γ (IFNγ) induced by overexpression of inactive forms of the IFNγ receptor.J. Biol. Chem. 268, 10,645–10,653.Google Scholar
  27. Dighe A. S., Campbell D., Hsieh C.-S., Clarke S., Greaves D. R., Gordon S., Murphy K. M., and Schreiber R. D. (1995) Tissue-specific targeting of cytokine unresponsiveness in transgenic mice.Immunity 3, 657–666.PubMedCrossRefGoogle Scholar
  28. Duong T. T., St. Louis J., Gilbert J. J., Finkelman F. D., and Strejan G. H. (1992) Effect of anti-interferon-γ and anti-interleukin-w monoclonal anti-body treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse.J. Neuroimmunol. 36, 105–115.PubMedCrossRefGoogle Scholar
  29. Duong T. T., Finkelman F. D., Singh B., and Strejan G. H. (1994) Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains.J. Neuroimmunol. 53, 101–107.PubMedCrossRefGoogle Scholar
  30. Ealick S. E., Cook W. J., Vijay-Kumar S., Carson M., Nagabhushan T. L., Trotta P. P., and Bugg C. E. (1991) Three-dimensional structure of recombinant human IFN-γ.Science 252, 698–702.PubMedCrossRefGoogle Scholar
  31. Eng, L. F. (1988). Regulation of glial intermediate filaments in astrogliosis, inThe Biochemical Pathology of Astrocytes (Norenberg M. D., Hertz L., and Schousboe, A., eds.), Liss, New York, pp. 79–90Google Scholar
  32. Erbe D. V., Collins J. E., Shen L., Graziano R. F. and Fanger M. W. (1990) The effect of cytokines on the expression and function of FC receptors for IgG on human myeloid cells.Mol. Immunol. 27, 57–67.PubMedCrossRefGoogle Scholar
  33. Fabry Z., Raine C. S., and Hart M. N. (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS.Immunol. Today 15, 219–224.CrossRefGoogle Scholar
  34. Farrar M. A. and Schreiber R. D. (1993) The molecular cell biology of interferon-γ and its receptor.Annu. Rev. Immunol. 11, 571–611.PubMedCrossRefGoogle Scholar
  35. Ferber I. A., Brocke S., Taylor-Edwards C., Ridgway W., Dinisco C., Steinman L., Dalton D., and Fathman C. G. (1996) Mice with a disrupted interferon-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE).J. Immunol. 156, 5–7.PubMedGoogle Scholar
  36. Ferm M. T., Soderstrom K., Jindal S., Gronberg A., Ivanyi J., Young R., and Kiessling R. (1992) Induction of human hsp60 expression in monocytic cell lines.Intl. Immunol. 4, 305–311.CrossRefGoogle Scholar
  37. Fierz W., Endler B., Reske K., Wekerle H., and Fontana A. (1985) Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation.J. Immunol. 134, 3785–3793.PubMedGoogle Scholar
  38. Fontana A., Fierz W., and Wekerle H. (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines.Nature 307, 273–276.PubMedCrossRefGoogle Scholar
  39. Fountoulakis M., Zulauf M., Lustig A., and Garotta G. (1992) Stoichiometry of interaction between interferon γ and its receptor.Eur. J. Biochem. 208, 781–787.PubMedCrossRefGoogle Scholar
  40. Frohman E. M., Frohman T. C., Dustin M. L., Vayuvegula B., Choi, B., van den Noort S., and Gupta S. (1989) The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation.J. Neuroimmunol. 23, 117–124.PubMedCrossRefGoogle Scholar
  41. Gajewski T. F., Schell S. R., Nau G., and Fitch F. W. (1989) Regulation of T-cell activation: differences among T cell subsets.Immunol. Rev. 111, 79–110.PubMedCrossRefGoogle Scholar
  42. Gao Y. L., Brosnan C. F., and Raine C. S.. (1995) Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system.J. Immunol. 154, 3548–3556.PubMedGoogle Scholar
  43. Gray P. W. and Goeddel D. V. (1982) Structure of the human immune interferon gene.Nature 298, 859–863.PubMedCrossRefGoogle Scholar
  44. Gray P. W. and Goeddel D. V.. (1983) Cloning and expression of murine immune interferon cDNA.Proc. Natl. Acad. Sci. USA 80, 5842–5846.PubMedCrossRefGoogle Scholar
  45. Gray P. W., Leung D. W., Pennica D., Yelverton E., Najarian R., Simonsen C. C., Derynck R., Sherwood P. J., Wallace D. M., Berger S. L., Levinson A. D., and Goeddel D. V. (1982) Expression of human immune interferon cDNA inE. coli and monkey cells.Nature 295, 503–508.PubMedCrossRefGoogle Scholar
  46. Greenlund A. C., Schreiber R. D., Goeddel D. V., and Pennica D. (1993) Interferon-γ induces receptor dimerization in solution and on cells.J. Biol. Chem. 268, 18,103–18,110.Google Scholar
  47. Hartung H.-P., Jung S., Stoll G., Zielasek J., Schmidt B., Archelos J. J., and Toyka K. V. (1992) Inflammatory mediators in demyelinating disorders of the CNS and PNS.J. Neuroimmunol. 40, 197–210.PubMedCrossRefGoogle Scholar
  48. Hayes C., Kelly D., Murayama S., Komiyama A., Suzuki K., and Popko B. (1992) Expression of theneu oncogene under the transcriptional control of the myelin basic protein gene in transgenic mice: generation of transformed glial cells.J. Neurosci. Res. 31, 175–187.PubMedCrossRefGoogle Scholar
  49. Hemmi S., Böhni R., Stark G., Di Marco F., and Aguet M. (1994) A novel member of the interferon receptor family complements functionality of the murine interferon γ receptor in human cells.Cell 76, 803–810.PubMedCrossRefGoogle Scholar
  50. Hickey W. F. (1991) Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation.Brain Pathol. 1, 97–105.PubMedGoogle Scholar
  51. Huynh H. K. and Dorovini-Zis Z. K. (1993) Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells.Am. J. Pathol. 142, 1265–1278.PubMedGoogle Scholar
  52. Improta T., Salvatore A. M., Di Luzio A., Romeo G., Coccia E. M., and Calissano P. (1988) IFN-gamma facilitates NGF-induced neuronal differentiation in PC12 cells.Exp. Cell Res. 179, 1–9.PubMedCrossRefGoogle Scholar
  53. Jindal S. (1996) Heat shock proteins: applications in health and disease.Trends Biotechnol. 14, 17–20.PubMedCrossRefGoogle Scholar
  54. Joly E. and Oldstone M. B. (1992) Neuronal cells are deficient in loading peptides onto MHC class I molecules.Neuron 8, 1185–1190.PubMedCrossRefGoogle Scholar
  55. Joly W., Mucke L., and Oldstone M. B. (1991) Viral persistence in neurons explained by lack of major histocompatibility class I expression.Science 253, 1283–1285.PubMedCrossRefGoogle Scholar
  56. Kelker H. C., Yip U. K., Anderson P., and Vilcek J. (1983) Effects of glycosidase treatment on the physicochemical properties and biological activity of human interferon-γ.J. Biol. Chem. 258, 8010–8013.PubMedGoogle Scholar
  57. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., and Dietzschold B. (1993) In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases.Proc. Natl. Acad. Sci. USA 90, 3024–3027.PubMedCrossRefGoogle Scholar
  58. Kumar S., Cole R., Chiapelli F., and de Vellis J. (1989) Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase.Proc. Natl. Acad. Sci. USA 86, 6807–6811.PubMedCrossRefGoogle Scholar
  59. Li Y., Atashi J., Hayes C., Reap E., Hunt III D., and Popko B. (1995) Morphological and molecular response of the MOCH-1 oligodendrocyte cell line to serum and interferon-γ: possible implications for demyelinating disorders.J. Neurosci. Res. 40, 189–198.PubMedCrossRefGoogle Scholar
  60. Martin R. and McFarland H. F. (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis.Crit. Rev. Clin. Lab. Sci. 32, 121–182.PubMedGoogle Scholar
  61. Martin R., McFarland H. F., and McFarlin D. E. (1992) Immunological aspects of demyelinating diseases.Annu. Rev. Immunol. 10, 153–187.PubMedCrossRefGoogle Scholar
  62. Massa P. T., Ozato K., and McFarlin D. E. (1993) Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons.Glia 8, 201–207.PubMedCrossRefGoogle Scholar
  63. Mauerhoff T., Pujol-Borrell R., Mirakian R., and Bottazzo G. F. (1988) Differential expression and regulation of major histocompatibility complex (MHC) products in neural and glial cells of the human fetal brain.J. Neuroimmunol. 18, 271–289.PubMedCrossRefGoogle Scholar
  64. McMillian M., Kong L. Y., Sawin S. M., Wilson B., Das K., Hudson P., Hong J. S., and Bing G. (1995) Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures.Biochem. Biophys. Res. Commun. 215, 572–577.PubMedCrossRefGoogle Scholar
  65. McCarron R. M., Wang L., Racke M. K., McFarlin D. E., and Spatz M. (1993) Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells.J. Neuroimmunol. 43, 23–30.PubMedCrossRefGoogle Scholar
  66. McRae B. L., Kennedy M. K., Tan L.-J., Dal Canto M. C., Picha K. S., and Miller S. D. (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein.J. Neuroimmunol. 38, 229–240.PubMedCrossRefGoogle Scholar
  67. Meda L., Cassatella M. A., Szendrei G. I., Otvos L. Jr., Baron P., Villalba M., Ferrari D., and Rossi F. (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma.Nature 374, 647–650.PubMedCrossRefGoogle Scholar
  68. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., and Lane T. E. (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide.J. Immunol. 151, 2132–2141.PubMedGoogle Scholar
  69. Miller S. D., McRae B. L., Vanderlugt C. L., Nikcevich K. M., Pope J. G., Pope L., and Karpus W. J. (1995) Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases.Immunol. Rev. 144, 225–244.PubMedCrossRefGoogle Scholar
  70. Mitrovic B., Ignarro L. J., Vinters H. V., Akers M. A., Schmid I., Uittenbogaart C., and Merrill J. E. (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes.Neuroscience 65, 531–539.PubMedCrossRefGoogle Scholar
  71. Momburg F., Koch N., Moller P., Moldenhauer G., Hutcher G. W., and Hammerling G. J. (1986) Differential expression of Ia and Ia-associated invariant chain in mouse tissue after in vivo treatment of IFN-γ.Immunol. 136, 940–948.Google Scholar
  72. Morange M., Dubois M. F., Bensaude O., and Lebon P. (1986) Interferon pretreatment lowers the threshold for maximal heat-shock response in mouse cells.J. Cell. Physiol. 127, 417–422.PubMedCrossRefGoogle Scholar
  73. Muller M., Briscoe J., Laxton C., Guschin D., Ziemiecki A., Silvennoinen O., Harpur A. G., Barbieri G., Witthuhn B. A., Schindler C., et al. (1993) The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and— gamma signal transduction.Nature 366, 129–135.PubMedCrossRefGoogle Scholar
  74. Neumann H., Cavalie A., Janne D. E., and Wekerle H. (1995) Induction of MHC class I genes in neurons.Science 269, 549–552.PubMedCrossRefGoogle Scholar
  75. Olsson T. (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma.J. Neuroimmunol. 40, 211–218.PubMedCrossRefGoogle Scholar
  76. Olsson T., Zhi W. W., Höjeberg B., Kostulas V., Jian Y. P., Anderson G., Ekre H.-P., and Link H. (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen induced secretion of interferon-gamma.J. Clin. Invest. 86, 981–985.PubMedGoogle Scholar
  77. Panitch H. S. (1992) Interferons in multiple sclerosis.Drugs 44, 946–962.PubMedGoogle Scholar
  78. Panitch H. S., Hirsch R. L., Schindler J., and Johnson K. P. (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system.Neurology 37, 1097–1102.PubMedGoogle Scholar
  79. Paul W. E. and Seder R. A. (1994) Lymphocyte responses and cytokines.Cell 76, 241–251.PubMedCrossRefGoogle Scholar
  80. Popko B., Hayes C., Li Y., Kelly D., Murayama S., and Suzuki K. (1994) MOCH-1 cells: an oligodendrocyte cell line generated using a transgenic approach, inA Multidisciplinary Approach to Myelin Diseases (Salvati S., ed.), Plenum, New York, pp. 103–113.Google Scholar
  81. Poser C. M. (1987) Trauma and multiple sclerosis.J. Neurol. 234, 155–159.PubMedCrossRefGoogle Scholar
  82. Poser C. M. (1993) The pathogenesis of multiple sclerosis. Additional considerations.J. Neurol. Sci. 115, (Suppl.), S3-S15.PubMedCrossRefGoogle Scholar
  83. Power C., Kong P.-A., and Trapp B. D. (1996) Major histocompatibility complex class I expression in oligodendrocytes induces hypomyelination in transgenic mice.J. Neurosci. Res. 44, 165–173.PubMedCrossRefGoogle Scholar
  84. Prabhaker S., Kurien E., Gupta R. S., Zielinski S., and Freedman M. S. (1994) Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease.Neurology 44, 1644–1648.Google Scholar
  85. Pulver M., Carrel S., Mach J. P., and de Tribolet N. (1987) Cultured human fetal astrocytes can be induced by interferon-gamma to express HLADR.J. Neuroimmunol. 14, 123–133.PubMedCrossRefGoogle Scholar
  86. Raine C. S. (1994a) The Dale E. McFarlin memorial lecture: the immunology of the multiple sclerosis lesion.Ann. Neurol. 36, S61-S72.PubMedCrossRefGoogle Scholar
  87. Raine C. S. (1994b) Presidential address: multiple sclerosis: immune system molecule expression in the central nervous system.J. Neuropathol. Exp. Neurol. 53, 328–337.PubMedCrossRefGoogle Scholar
  88. Ransohoff R. M. and Benveniste E. N. (1996)Cytokines and the CNS. CRC, Boca Raton, FL.Google Scholar
  89. Reiner S. L. and Seder R. A. (1995) T helper cell differentiation in immune response.Curr. Opinion Immunol. 7, 360–366.CrossRefGoogle Scholar
  90. Renno T., Lin J. Y., Piccirillo C., Antel J., and Owens T. (1994) Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice.J. Neuroimmunol. 49, 1–7.PubMedCrossRefGoogle Scholar
  91. Rodriguez M. and Scheithauer B. (1994) Ultrastructure of multiple sclerosis.Ultrastructural Pathol. 18, 3–13.Google Scholar
  92. Rosenman S. J., Shrikant P., Dubb L., Benveniste E. N., and Ransohoff R. M. (1995) Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines.J. Immunol. 154, 1888–1899.PubMedGoogle Scholar
  93. Rubio N. and de Felipe C. (1991) Demonstration of the presence of a specific interferon-γ receptor on murine astrocyte cell surface.J. Neuroimmunol. 35, 111–117.PubMedCrossRefGoogle Scholar
  94. Ryder E. F., Snyder E. Y., and Cepko C. L. (1990) Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer.J. Neurobiol. 21, 356–375.PubMedCrossRefGoogle Scholar
  95. Sadowski H. B., Shuai K., Darnell J. E. Jr., and Gilman M. Z. (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors.Science 261, 1739–1744.PubMedCrossRefGoogle Scholar
  96. Sakatsume M., Igarashi K.-I., Winestock K. D., Garotta G., Larner A. C., and Finbloom D. S. (1995) The Jak kinases differentially associate with the α and β (accessory factor) chains of the interferon γ receptor to form a functional receptor unit capable of activating STAT transcription factors.J. Biol. Chem. 270, 17,528–17,534.Google Scholar
  97. Satoh J., Kastrukoff L. F., and Kim S. U. (1991a) cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes.J. Neuropathol. Exp. Neurol. 50, 215–226.PubMedGoogle Scholar
  98. Satoh J., Kim S. U., Kastrukoff L. F., and Takei F. (1991b) Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes.J. Neurosci. Res. 29, 1–12.PubMedCrossRefGoogle Scholar
  99. Schindler C. (1995) Cytokine signal transduction.Receptor 5, 51–62.PubMedGoogle Scholar
  100. Schreiber R. D. and Celada A. (1985) Molecular characterization of interferon gamma as a macrophage activating factor.Lymphokines 11, 87–118.Google Scholar
  101. Seder R. A. and Paul W. E. (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells.Annu. Rev. Immunol. 12, 635–673.PubMedCrossRefGoogle Scholar
  102. Selmaj K., Raine C. S., Farooq M., Norton W. T., and Brosnan C. F. (1991) Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin.J. Immunol. 147, 1522–1529.PubMedGoogle Scholar
  103. Selmaj K., Brosnan C. F., and Raine C. S. (1992) Expression of heat shock protein-65 by oligodendrocytes in vivo and in vitro: Implications for multiple sclerosis.Neurology 42, 795–800.PubMedGoogle Scholar
  104. Sethna M. P. and Lampson L. A. (1991) Immune modulation within the brain: recruitment of inflammatory cells and increased major histo-compatibility antigen expression following intracerebral injection of interferon-gamma.J. Neuroimmunol. 34, 121–132.PubMedCrossRefGoogle Scholar
  105. Shaw G. and Kamen R. (1986) A conserved AU sequence from the 3′ untranslated region of GMCSF mRNA mediates selective mRNA degradation.Cell 46, 659–667.PubMedCrossRefGoogle Scholar
  106. Shuai K. (1994) Interferon-activated signal transduction to the nucleus.Curr. Opinion Cell Biol. 6, 253–259.PubMedCrossRefGoogle Scholar
  107. Shuai K., Stark G. R., Kerr I. M., and Darnell J. E. Jr. (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferongamma.Science 261, 1744–1746.PubMedCrossRefGoogle Scholar
  108. Simmons R. D. and Willenborg D. O. (1990) Direct injection of cytokines into the spinal cord causes autoimmune encephalomyelitis-like inflammation.J. Neurol. Sci. 100, 37–42.PubMedCrossRefGoogle Scholar
  109. Skias D. D., Kim D. K., Reder A. T., Antel J. P., Lancki D. W., and Fitch F. W. (1987) Susceptibility of astrocytes to class I MHC antigen-specific cytotoxicity.J. Immunol. 138, 3254–3258.PubMedGoogle Scholar
  110. Snapper C. M. and Paul W. E. (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production.Science 236, 944–947.PubMedCrossRefGoogle Scholar
  111. Soh J., Donnelly R. J., Kotenko S., Mariano T. M., Cook J. R., Wany N., Emanuel S., Schwartz B., Miki T., and Pestka S. (1994) Identification and sequence of an accessory factor required for activation of the human interferon γ receptor.Cell 76, 793–802.PubMedCrossRefGoogle Scholar
  112. Steffen B. J., Butcher E. C., and Engelhardt B. (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse.Am. J. Pathol. 145, 189–201.PubMedGoogle Scholar
  113. Steiniger B. and van der Meide P. H. (1988) Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon.J. Neuroimmunol. 19, 111–118.PubMedCrossRefGoogle Scholar
  114. Suzumura A., Silberberg D. H., and Lisak R. P. (1986) The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines.J. Neuroimmunol. 11, 179–190.PubMedCrossRefGoogle Scholar
  115. Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., and Huston G. (1991) Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development.Immunol. Rev. 123, 115–144.PubMedCrossRefGoogle Scholar
  116. Tamura K., Shimizu K., Yamada M., Okamoto Y., Matsui Y., Park K.-C., Mabuchi E., Moriuchi S., and Mogami H. (1989) Expression of major histocompatibility complex on human medulloblastoma cells with neuronal differentiation.Cancer Res. 49, 5380–5384.PubMedGoogle Scholar
  117. Tjuvajev J., Gansbacher B., Desai R., Beattie B., Kaplitt M., Matei C., Koutcher J., Gilboa E., and Blasberg R. (1995) RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma.Cancer Res. 55, 1902–1910.PubMedGoogle Scholar
  118. Torres C., Aránguez I., and Rubio N. (1995) Expression of interferon-γ receptors on murine oligo-dendrocytes and its regulation by cytokines and mitogens.Immunology 86, 250–255.PubMedGoogle Scholar
  119. Traugott U. and Lebon P. (1988) Demonstration of α, β, and γ interferon in active chronic multiple sclerosis lesions.Ann. NY Acad. Sci. 540, 309–311.PubMedCrossRefGoogle Scholar
  120. Traugott U., Reinherz E. L., and Raine C. S. (1983) Multiple sclerosis: distribution of T-cell subsets within active chronic lesions.Science 219, 308–310.PubMedCrossRefGoogle Scholar
  121. Trinchieri G. and Perussia B. (1985) Immune interferon: a pleiotropic lymphokine with multiple effects.Immunol. Today 6, 131.CrossRefGoogle Scholar
  122. Tuohy V. K., Sobel R. A., and Lees M. B. (1988a) Myelin proteolipid protein-induced experimental allergic encephalomyelitis.J. Immunol. 140, 1868–1873.PubMedGoogle Scholar
  123. Tuohy V. K., Lu Z., Sobel R. A., Laursen R. A., and Lees M. B. (1988b) A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis.J. Immunol. 141, 1126–1130.PubMedGoogle Scholar
  124. Tuohy V. K., Lu Z., Sobel R. A., Laursen R. A., and Lees M. B. (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice.J. Immunol. 142, 1523–1527.PubMedGoogle Scholar
  125. Tuohy V. K., Sobel R. A., Lu Z., Laursen R. A., and Lees M. B. (1992) Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice.J. Neuroimmunol. 39, 67–74.PubMedCrossRefGoogle Scholar
  126. Turnley A. M. and Morahan G. (1995) Dysmyelination in class I MHC transgenic mice.Microsci. Res. Tech. 32, 286–294.CrossRefGoogle Scholar
  127. Turnley A. M., Miller J. F. A. P., and Bartlett P. F. (1991a) Regulation of MHC molecules on MBP positive oligodendrocytes in mice by IFN-γ and TNF-α.Neurosci. Lett. 123, 45–48.PubMedCrossRefGoogle Scholar
  128. Turnley A. M., Morahan G., Okano H., Bernard O., Mikoshiba K., Allison J., Bartlett P. F., and Miller J. F. A. P. (1991b) Dysmyelination in transgenic mice resulting from expression of class I histocompatibility molecules in oligodendrocytes.Nature (Lond.) 353, 566–568.CrossRefGoogle Scholar
  129. Utz U. and McFarland H. F. (1994) The role of T cells in multiple sclerosis: implications for therapies targeting the T cell receptor.J. Neuropathol. Exp. Neurol. 53, 351–358.PubMedGoogle Scholar
  130. van Noort J. M., van Sechel A. C., Bajramovic J. J., el Ouagmiri M., Polman C. H., Lassmann H., and Ravid R. (1995) The small heat-shock protein alpha B-crystalline as candidate autoantigen in multiple sclerosis.Nature 375, 739–740.CrossRefGoogle Scholar
  131. Vartanian T., Li Y., Zhao M., and Stefansson K. (1995) Interferon-γ-induced oligodondrocyte cell death: implications for the pathogenesis of multiple sclerosis.Mol. Med. 1, 732–743.PubMedGoogle Scholar
  132. Vass K., Heininger K., Schafer B., Linington C., and Lassmann H. (1992) Interferon-γ potentiates antibody-mediated demyelination in vivo.Ann. Neurol. 32, 198–206.PubMedCrossRefGoogle Scholar
  133. Vilcek J., and Oliveira I. (1994) Recent progress in the elucidation of interferon-gamma actions: molecular biology and biological functions.Int. Arch. Allergy Immunol. 104, 311–316.PubMedCrossRefGoogle Scholar
  134. Vilcek J., Gray P. W., Rinderknecht E., and Sevastopoulos C. G. (1985) Interferon gamma: a lymphokine for all seasons.Lymphokines 11, 1–32.Google Scholar
  135. Voorthuis J. A. C., Uitdehaag B. M. J., de Groot C. J. A., Goede P. H., van der Meide P. H., and Dijkstra C. D. (1990) Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats.Clin. Exp. Immunol. 81, 183–188.PubMedCrossRefGoogle Scholar
  136. Voskuhl R. R., Martin R., Bergman C., Calal M., Ruddle N. H., and mcFarland H. F. (1993) T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes.Autoimmunity 15, 137–143.PubMedGoogle Scholar
  137. Walter M. R., Windsor W. T., Nagabhushan T. L., Lundell D. J., Lunn C. A., Zauodny P. J., and Narula S. K. (1995) Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor.Nature 376, 217,218.CrossRefGoogle Scholar
  138. Watling D., Guschin D., Müller M., Silvennoinen O., Witthuhn B. A., Quelle F. W., Rogers N. C., Schindler C., Stark G. R., Ihle J. N., et al. (1993) Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the inteferon-gamma signal transduction pathway.Nature 366, 166–170.PubMedCrossRefGoogle Scholar
  139. Wheelock E. F. (1965) Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin.Science 149, 310,311.CrossRefGoogle Scholar
  140. Willenborg D. O., Fordham S. A., Cowden W. B., and Ramshaw I. A. (1995) Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system.Scand. J. Immunol. 41, 31–41.PubMedCrossRefGoogle Scholar
  141. Wong G. H., Bartlett P. F., Clark-Lewis I., Battye F., and Schrader J. W. (1984) Inducible expression of H-2 and Ia antigens on brain cells.Nature 310, 688–691.PubMedCrossRefGoogle Scholar
  142. Wong G. H., Bartlett P. F., Clark-Lewis I., McKimm-Breschkin J. L., and Schrader J. W. (1985) Interferon-gamma induces the expression of H-2 and Ia antigens on brain cells.J. Neuroimmunol. 7, 255–278.PubMedCrossRefGoogle Scholar
  143. Yong V. W., Moumdjian R., Yong F. P., Ruijs T. C. G., Freedman M. S., Cashman N., and Antel J. P. (1991) γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo.Proc. Natl. Acad. Sci. USA 88, 7016–7020.PubMedCrossRefGoogle Scholar
  144. Yong V. W., Tejada-Berges T., Goodyer C. G., Antel J. P., and Yong F. P. (1992) Differential proliferative response of human and mouse astrocytes to gamma-interferon.Glia 6, 269–280.PubMedCrossRefGoogle Scholar
  145. Yoshioka T., Feigenbaum L., and Jay G. (1991) Transgenic mouse model for central nervous system demyelination.Mol. Cell. Biol. 11, 5479–5486.PubMedGoogle Scholar
  146. Young H. A. and Hardy K. J. (1995) Role of interferon-γ in immune cell regulation.J. Leukocyte Biol. 58, 373–381.PubMedGoogle Scholar
  147. Zamvil S. S. and Steinman L. (1990) The T lymphocyte in experimental allergic encephalomyelitis.Annu. Rev. Immunol. 8, 579–621.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Brian Popko
    • 1
    • 2
    • 3
  • Joshua G. Corbin
    • 1
  • Kristine D. Baerwald
    • 1
  • Jeffrey Dupree
    • 1
  • Annie M. Garcia
    • 1
  1. 1.Curriculum in Neurobiology UNC Neuroscience CenterUniversity of North CarolinaChapel Hill
  2. 2.Department of Biochemistry and Biophysics UNC Neuroscience CenterUniversity of North CarolinaChapel Hill
  3. 3.Program in Molecular Biology and Biotechnology UNC Neuroscience CenterUniversity of North CarolinaChapel Hill

Personalised recommendations