, Volume 6, Issue 2, pp 187–194 | Cite as

Role of interleukin-1β, interleukin-6, and TNF-α in intestinal maturation induced by dietary spermine in rats

  • Mohammadi Kaouass
  • Patricia Deloyer
  • Isabelle Gouders
  • Olivier Peulen
  • Guy Dandrifosse
Original Articles


In the present investigation, the authors aimed to evaluate the role of cytokines in intestinal postnatal maturation induced by dietary polyamines. Neonatal rats were administered either saline or spermine (8 μmol) orally. Spermine increased interleukin-1β (IL-1β), IL-6, and TNF-α plasma concentration. The maximum concentrations of IL-1β, IL-6, and TNF-α were, respectively, observed at 4, 4, and 8 h posttreatment. Intraperitoneal (ip) injection of IL-1β increased the specific activity of sucrase in whole small intestine, whereas the specific activities of maltase and lactase were significantly enhanced only in the jejunum. IL-6 elicited sucrase and increased maltase specific activity in the whole small intestine, but lactase specific activity was not affected. TNF-α had no effect on sucrase and maltase specific activity, but a slight augmentation of lactase specific activity was detected in the jejunum. Spermine and spermidine content in the intestine was increased by ip injection of IL-1β and IL-6. Corticosterone secretion was elevated by single ip injection of IL-1β, IL-6, or TNF-α. These findings suggest that spermine could induce postnatal intestinal development and corticosterone secretion through a cytokine-dependent mechanism.

Key Words

Spermine cytokines corticosterone intestine suckling rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grillo, M. A. (1985).Int. J. Biochem. 17, 943–948.PubMedCrossRefGoogle Scholar
  2. 2.
    Pegg, A. E. (1986).Biochem. J. 234, 249–262.PubMedGoogle Scholar
  3. 3.
    Tabor, C. W. and Tabor, H. (1976).Annu. Rev. Biochem. 45, 285–306.PubMedCrossRefGoogle Scholar
  4. 4.
    Veress, B. and Baintner K. (1971).Acta Morph. Acad. Sci. Hung. 19, 335–341.Google Scholar
  5. 5.
    Luk, G. D., Marton, L. J., and Baylin, S. B. (1990).Science 210, 381–387.Google Scholar
  6. 6.
    Henning, S. J. (1981).Am. J. Physiol. 241, G199-G214.PubMedGoogle Scholar
  7. 7.
    Kretchmer, N. (1985).J. Clin. Nutr. 41, 391–398.Google Scholar
  8. 8.
    Galand, G. (1989).Comp. Biochem. Physiol. 94B, 1–11.Google Scholar
  9. 9.
    Herbst, J. J. and Koldovsky, O. (1972).Biochem. J. 26, 471–476.Google Scholar
  10. 10.
    Martin, G. R. and Henning, S. J. (1982).Endocrinology 111, 912–918.PubMedGoogle Scholar
  11. 11.
    Buts, J. P., De Keyser, N., and Dive, C. (1988).Eur. J. Clin. Invest. 18, 391–398.PubMedGoogle Scholar
  12. 12.
    Dufour, C., Dandrifosse, G., Forget, P., Vermesse, F., Romain, N., and Lepoint, P. (1998).Gastroenterology 95, 112–116.Google Scholar
  13. 13.
    Georges, P., Dandrifosse, G., Vermesse, F., Forget, P., Deloyer, P., and Romain, N. (1990).Dig. Dis. Sci. 35, 1528–1536.PubMedCrossRefGoogle Scholar
  14. 14.
    Wild, G.E., Daly, A.S., Sauriol, N., and Bennett, G. (1993).Biol. Neonate 63, 246–257.PubMedCrossRefGoogle Scholar
  15. 15.
    Pollack, P. F., Koldovsky, O., and Nishioka, K. (1992).Am. J. Clin. Nutr. 56, 371–375.PubMedGoogle Scholar
  16. 16.
    Romain, N., Dandrifosse, G., Jeusette, F., and Forget, P. (1992).Pediatr. Res. 32, 58–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaouass, M., Sulon, J., Deloyer, P., and Dandrifosse, G. (1994b).J. Endocrinol. 141, 279–281.PubMedGoogle Scholar
  18. 18.
    Kaouass, M., Deloyer, P., and Dandrifosse, G. (1994a).Digestion 55, 160–167.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaouass, M., Sulon, J., Deloyer, P., and Dandrifosse, G. (1993).Arch. Int. Physiol. Biochim. 101, B22.Google Scholar
  20. 20.
    Rothwell, N. J. (1991).J. Endocrinol. 128, 171–173.PubMedGoogle Scholar
  21. 21.
    Gupta, D. (1992).Neuroendocrinol Lett. 14, 1–19.CrossRefGoogle Scholar
  22. 22.
    Rivier, C., Chizzonite, R., and Vale, W. (1989).Endocrinology 125, 2800–2805.PubMedCrossRefGoogle Scholar
  23. 23.
    Besedovsky, H. O., Delrey, A., Klusman, I., Furukawa, H., Monge, G., and Arditi, G. (1991).J. Steroid Biochem. Molec. Biol. 40, 613–618.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Grady, M., Hall, N. R. S., and Menzies, R. A. (1993).Psychoneuro-endocrinology 18, 241–247.CrossRefGoogle Scholar
  25. 25.
    Watanobe, H., Sasaki, S., and Takebe, K. (1991).Neurosci. Lett. 133, 7–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Dignass, A. U. and Podolsky, D. K. (1993).Gastroenterology 105, 1323–1332.PubMedGoogle Scholar
  27. 27.
    Buts, J. P., De Keyser, N., Kolanowski, J., Sokal, E., and Van Hoof, F. (1993).Dig. Dis. Sci. 38 1091–1098.PubMedCrossRefGoogle Scholar
  28. 28.
    Wong, G. G. and Clarck, S. C. (1988).Immunol. Today 9, 137–142.PubMedCrossRefGoogle Scholar
  29. 29.
    Snyder, D. S. and Unanue, E. R. (1982).J. Immunol. 129, 1803–1805.PubMedGoogle Scholar
  30. 30.
    Besedovsky, H. O., Delrey, A., Sorkin, E., and Dinarello, D. A. (1986).Science 233, 652–654.PubMedCrossRefGoogle Scholar
  31. 31.
    Uehara, A., Okumura, T., Kumei, Y., Takasugi, Y., and Namiki, M. (1991).Eur. J. Pharmacol. 192, 185–187.PubMedCrossRefGoogle Scholar
  32. 32.
    Shirota, J., Ledug, L., Yuan, S. Y., and Yothy, S. (1990).Virchows Arch. B. Cell Pathol. 58, 303–308.Google Scholar
  33. 33.
    Chung, D. H., Evers, B. M., Townsend, C. M., Herndon, D. N., Ko, T. C., Uchida, T., and Thompson, J. C. (1992).Surgery 112, 365–369.Google Scholar
  34. 34.
    Hirvonen, A., Immonen, T., Leinonen, P., Alhonen-Hongisto, L., Jänne, O. A., and Jänne, J. (1988).Biochim. Biophys. Acta 950, 229–233.PubMedGoogle Scholar
  35. 35.
    Uehara, A., Gottschall, P. E., Dahl, R. R., and Arimura, A. (1987).Endocrinology 121, 1580–1582.PubMedGoogle Scholar
  36. 36.
    Helle, M., Boeije, L., and Aarden, L. A. (1988).Eur. J. Immunol. 18, 1535–1540.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Snick, J., Cayphas, S., Vink, A., Uyttenhove, C., Coulie, P. G., Rubira, M. R., and Simpson, R. (1986).Proc. Natl. Acad. Sci. 83, 9679–9683.PubMedCrossRefGoogle Scholar
  38. 38.
    Mosmann, T. (1983).J. Immunol. Methods 65, 55–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Hopkins, S. and Humphreys, M. (1989).J. Immunol. Methods 120 271–276.PubMedCrossRefGoogle Scholar
  40. 40.
    Espevik, T. and Nissen-Meyer, J. (1986).J. Immunol. Methods 95, 99–105.PubMedCrossRefGoogle Scholar
  41. 41.
    Dahlqvist, A. (1964).Anal. Biochem. 7, 18–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Bradford, M. H. (1976).Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  43. 43.
    Schneider, W. C. (1957). In:Methods in Enzymology. Colowick, S. P. and Kaplan, N. O. (eds.). Academic: New York, pp. 680–684.Google Scholar
  44. 44.
    Bontemps, J., Laschet, J., Dandrifosse, G., Van Cutsem, J. L., and Forget, P. (1984).J. Chromatogr. 311, 59–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Brown, N. D. and Strickler, H. P. (1982).J. Chromatogr. 295, 101.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Mohammadi Kaouass
    • 1
  • Patricia Deloyer
    • 1
  • Isabelle Gouders
    • 1
  • Olivier Peulen
    • 1
  • Guy Dandrifosse
    • 1
  1. 1.Department of Biochemistry and General Physiology, Institute of ChemistryUniversity of LiegeLiegeBelgium

Personalised recommendations