Advertisement

Annals of Biomedical Engineering

, Volume 25, Issue 1, pp 69–76 | Cite as

The effect of ultrasonic frequency upon enhanced killing ofP. aeruginosa biofilms

  • Zhen Qian
  • Richard D. Sagers
  • William G. Pitt
Research Articles

Abstract

It is widely recognized that the bacteria sequestered in a biofilm on a medical implant are much more resistant to antibiotics than their planktonic counterparts. Recent studies have shown that application of antibiotic along with low power ultrasound significantly increases the killing of planktonic bacteria by the antibiotic. Herein is reported a similar application of antibiotic and ultrasound to sessile bacteria in biofilms ofPseudomonas aeruginosa on a polyethylene substrate. Biofilm viability was measured after exposure to 12 μg/ml gentamicin sulfate and 10 mW/cm2 ultrasound at frequencies of 70 kHz, 500 kHz, 2.25 MHz, and 10 MHz. The results indicate that a significantly greater fraction of the bacteria was killed by gentamicin when they were subjected to ultrasound. However, ultrasound by itself did not have any deleterious effect on the biofilm viability. In addition, lower-frequency insonation is significantly more effective than higher frequency in reducing bacterial viability within the biofilm. The possible mechanisms of synergistic action are discussed.

Keywords

Ultrasound Antibiotic Bacteria Pseudomonas aeruginosa Gentamicin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anwar, H., J. L. Strap, and J. W. Costerton. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy.Antimicrob. Agents Chemother. 36: 1347–1351, 1992.PubMedGoogle Scholar
  2. 2.
    Barton, A. J., R. D. Sagers, and W. G. Pitt. Measurement of bacterial growth rates on polymers.J. Biomed. Mater. Res. 32:271–278, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Benson, D. E., C. B. Grissom, G. L. Burns, and S. F. Mohammad. Magnetic field enhancement of antibiotic activity in biofilm formingPseudomonas aeruginosa.ASAIO J. 40:M371-M376, 1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Blenkinsopp, S. A., A. E. Khoury, and J. W. Costerton. Electrical enhancement of biocide efficacy against biofilms.Appl. Environ. Microb. 58:3770–3773, 1992.Google Scholar
  5. 5.
    Brown, M. R. W., D. G. Allison, and P. Gilbert. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?J. Antimicrob. Chemother. 22:777–783, 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown, M. R. W., P. J. Collier, and P. Gibert. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope in batch and continuous culture studies.Antimicrob. Agents Chemother. 34:1623–1628, 1990.PubMedGoogle Scholar
  7. 7.
    Carbon, C., E. Collatz, and G. Humbert. Aminoglycosides (aminocyclitols). In:Amtimicrobial Agents Annual 1. Amsterdam: Elsevier, 1986, pp. 1–49.Google Scholar
  8. 8.
    Cook, A. D.The Adhesion of Pseudomonas aeruginosa to Poly(HEMA)-based Hydrogels. Brigham Young University, 1991.Google Scholar
  9. 9.
    Costerton, J. W., B. E. Ellis, K. Lam, F. Johnson, and A. E. Khoury. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria.Antimicrob. Agents Chemother. 38:2803–2809, 1994.PubMedGoogle Scholar
  10. 10.
    Costerton, J. W., K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, and M. Dasgupta. Bacterial biofilms in nature and disease.Annu. Rev. Microbiol. 41:435–464, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Eng, R. H., F. T. Padberg, S. M., Smith, E. N. Tan, and C. E. Cherubin. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria.Antimicrob. Agents Chemother. 35:1824–1828, 1991.PubMedGoogle Scholar
  12. 12.
    Gilbert, P., and M. R. W. Brown. Influence of growth rate and nutrient limitation on the gross cellular composition ofPseudomonas aeruginosa and its resistance to 3- and 4-chlorophenol.J. Bacteriol. 133:1066–1072, 1978.PubMedGoogle Scholar
  13. 13.
    Gilbert, P., M. R. W. Brown, and P. J. Collier. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response.Antimicrob Agents Chemother. 34:1865–1868, 1990.PubMedGoogle Scholar
  14. 14.
    Huang, C.-T., G. James, W. G. Pitt, and P. S. Stewart. Effects of ultrasonic treatment on the efficacy of gentamicin against established pseudomonas aeruginosa biofilms.Colloids Surfaces B 6:235–242, 1996.CrossRefGoogle Scholar
  15. 15.
    Jass, J., and H. M. Lappin-Scott. The effect of an electrical current and antibiotics onPseudomons aeruginosa biofilm.Abst. Gen. Meet. Am. Soc. Microbiol. 94:21, 1994.Google Scholar
  16. 16.
    Khoury, A. E., K. Lam, B. Ellis, and J. W. Costerton: Prevention and control of bacterial infections associated with medical devices.Am. Soc. Artif. Intern. Org. J. 38:M174-M178, 1992.Google Scholar
  17. 17.
    Mason, T. J.Practical Sonochemistry, Ellis Horwood Books in Organic Chemistry, edited by J. Dellor, Chichester: Ellis Horwood, 1991.Google Scholar
  18. 18.
    Nicas, T. I., and B. H. Iglewski. The contribution of exoproducts to virulence ofPseudomonas aeruginosa.Can. J. Micribiol. 31:387–392, 1985.CrossRefGoogle Scholar
  19. 19.
    Nichols, W. W., S. M. Dorrington, M. P. E. Slack, and H. L. Walmsley. Inhibition of tobramycin diffusion by binding to alginate.Antimicrob. Agents Chemother. 32:518–523, 1988.PubMedGoogle Scholar
  20. 20.
    Pedersen, P. C., and D. A. Christensen. Power measurement techniques applied to imaging systems. In:Acoustical Ho lography, Vol. 6, edited by N. Booth. New York: Plenum, 1975, pp. 711–739.Google Scholar
  21. 21.
    Pitt, W. G., M. O. McBride, J. K. Lunceford, R. J. Roper, and R. D. Sagers. Ultrasonic enhancement of antibiotic action on gram-negative bacteria.Antimicrob. Agents Chemother. 38:2577–2582, 1994.PubMedGoogle Scholar
  22. 22.
    Suci, P. A., M. W. Mittelman, F. P. Yu, and G. G. Geesey, Investigation of ciprofloxacin penetration intoPseudomonas aeruginosa biofilms.Antimicrob. Agents Chemother. 38: 2125–2133, 1994.PubMedGoogle Scholar
  23. 23.
    Suslick, K. S. Homogeneous sonochemistry. In:Ultrasound, Its Chemical, Physical, and Biological Effects, edited by K. S. Suslick. New York: VCH Publishers, 1988, pp. 123–163.Google Scholar
  24. 24.
    Williams, A. R.Ultrasound: Biological Effects and Potential Hazards, Medical Physics Series. London: Academic Press, 1983.Google Scholar
  25. 25.
    Wise, R. The biofilm glycocalyx as a resistance factor.J. Antimicrob. Chemother. 26:1–6, 1990.CrossRefGoogle Scholar
  26. 26.
    Yumita, N., R. Nishigaki, K. Umemura, P. D. Morse, H. M. Swartz, C. A. Cain, and S. Umemura. Sonochemical activation of hematoporphyrin: an ESR study.Radiation Res. 138: 171–176, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 1997

Authors and Affiliations

  • Zhen Qian
    • 1
  • Richard D. Sagers
    • 2
  • William G. Pitt
    • 1
  1. 1.Department of Chemical EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of MicrobiologyBrigham Young UniversityProvoUSA

Personalised recommendations