Cell Biochemistry and Biophysics

, Volume 31, Issue 3, pp 307–319 | Cite as

Mechanisms of nuclear translocation of insulin

Article

Abstract

Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that tial for the regulation of nuclear events by Ins.

Index Entries

Insulin (Ins) Ins degradation translocation cytosolic Ins-binding proteins (CIBPs) Ins-degrading enzyme (IDE) cytoplasm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheatham, B. and Kahn, C. R. (1995) Insulin action and the insulin signalin network.Endocr. Rev. 16, 117–142.PubMedCrossRefGoogle Scholar
  2. 2.
    Kohn, A. D., Summers, S. A., Birnbaum, M. J., and Roth, R. A. (1996) Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation.J. Biol. Chem. 271, 31,372–31,378.Google Scholar
  3. 3.
    White, M. F. (1996) IRS-signaling system in insulin and cytokine action.Phil. Trans. R. Soc. Lond. 351, 181–189.CrossRefGoogle Scholar
  4. 4.
    Smith, R. M. and Jarett, L. (1988) Receptormediated endocytosis and intracellular processing of insulin: ultrastructual and biochemical evidence for cell-specific heterogeneity and distinction from non-hormonal ligands.J. Lab. Invest. 58, 613–629.Google Scholar
  5. 5.
    Jarett, L., Harada, S., Lee, Y-H., Smith, J. A., Shah, N., Zhang, S., and Smith, R. M. (1995) Insulin endocytosis and other alternative pathways in the insulin signal transduction network.Antibody, Immunoconjugates, and Radiopharm. 8, 251–259.Google Scholar
  6. 6.
    Smith, R. M., Harada, S., and Jarett, L. (1997) Insulin internalization and other signaling pathways in the pleiotropic effects of insulin.Intern. Rev. Cytol. 173, 243–280.Google Scholar
  7. 7.
    Carpentier, J.-L. (1992) Insulin-induced and constitutive internalization of the insulin receptor.Hormone Res. 38, 13–18.PubMedGoogle Scholar
  8. 8.
    Raper, S. E., Burwen, S. J., Barker, M. E., and Jones, A. L. (1987) Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration.Gastroenterology 92, 1243–1250.PubMedGoogle Scholar
  9. 9.
    Prudovsky, I. A., Savion, N., La Vallee, T. M., and Maciag, T. (1996) Nuclear trafficking of extracellular fibroblast growth factor (FGF)-1 correlates with the perinuclear association of the FGF receptor-1α isoforms but not the FGF receptor-1β isoforms.J. Biol. Chem. 271, 14,198–14,205.Google Scholar
  10. 10.
    Amalric, F., Bouche, G., Bonnet, H., Brethenou, P., Roman, A. M., Truchet, I., and Quatro, N. (1994) Fibroblast growth factor-2 (FGF-2) in the nucleus: translocation process and targets.Biochem. Pharm. 47, 111–115.PubMedCrossRefGoogle Scholar
  11. 11.
    Eveleth, D. D. and Bradshaw, R. A. (1992) Nerve growth factor nonresponsive pheochromocytoma cells: altered internalization results in signal disfunction.J. Cell Biol. 117, 291–299.PubMedCrossRefGoogle Scholar
  12. 12.
    Weitzmann, M. N. and Savage, N. (1992) Nuclear internalization and DNA binding activities of interleukin-1, interleukin-1 receptor and interleukin-1/receptor complexes.Biochem. Biophys. Res. Commun. 187, 1166–1171.PubMedCrossRefGoogle Scholar
  13. 13.
    Clevenger, C. V., Altmann, S. W., and Prystowsky, M. B. (1991) Requirement of nuclear prolactin for interleukin-2-stimulated proliferation of T lymphocytes.Science 253, 77–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Morianu, J. and Riodan, J. F. (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity.Proc. Natl. Acad. Sci. USA 91, 1677–1681.CrossRefGoogle Scholar
  15. 15.
    Lobie, P. E., Mertani, H., Morel, G., Morales-Bustos, O., Norstedt, G., and Waters, M. J. (1994) Receptor-mediated nuclear translocation growth hormone.J. Biol. Chem. 269, 21,330–21,339.Google Scholar
  16. 16.
    Soler, A. P., Alemany, J., Smith, R. M., De Pablo, F., and Jarett, L. (1990) State of differentiation of embryonic chicken lens cells determines insulin-like growth factor I internalization.Endocrinology 127, 595–603.PubMedGoogle Scholar
  17. 17.
    Wiedtocha, A., Faines, P. O., Madshus, I. H., Sandvig, K., and Olsnes, S. (1994) Dual mode of signal transduction by externally added acidic fibroblastic growth factor.Cell 76, 1039–1051.CrossRefGoogle Scholar
  18. 18.
    Smith, R. M. and Jarett, L. (1987) Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by insulin-receptor mediated process.Proc. Natl. Acad. Sci. USA 84, 459–463.PubMedCrossRefGoogle Scholar
  19. 19.
    Soler, A. P., Thompson, K. A., Smith, R. M., and Jarett, L. (1989) Immunological demonstration of the accumulation of insulin, but not insulin receptors, in nuclei of insulintreated cells.Proc. Natl. Acad. Sci. USA 86, 6640–6644.PubMedCrossRefGoogle Scholar
  20. 20.
    Thompson, K. A., Soler, A. P., Smith, R. M., and Jarett, L. (1989) Intranuclear localization of insulin in rat hepatoma cells: insulin/matrix association.Eur. J. Cell Biol. 50, 442–446.PubMedGoogle Scholar
  21. 21.
    Heyner, S., Rao, L. V., Jarett, L., and Smith, R. M. (1989) Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations.Dev. Biol. 134, 48–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Blazer-Yost, B. L., Shah, N., Jarett, L., Cox, M., and Smith, R. M. (1992) Insulin and IGF 1 receptors in a model renal epithelium: receptor localization and characterization.Biochem. Intern. 28, 143–153.Google Scholar
  23. 23.
    Bergeron, J. J. M., Sikstorm, R., Hand, A. R., and Posner, B. I. (1979) Binding and uptake of125I-insulin into rat liver hepatocytes and endothelium.J. Cell Biol. 80, 427–443.PubMedCrossRefGoogle Scholar
  24. 24.
    Carpentier, J.-L., Gorden, P., Freychet, P., Le Cam, A., and Orci, L. (1979) Lysosomal association of internalized125I-insulin in isolated rat hepatocytes. Direct demonstration by quantitative electron microscopic autoradiography.J. Clin. Invest. 63, 1249–1261.PubMedCrossRefGoogle Scholar
  25. 25.
    Shah, N., Zhang, S., Harada, S., Smith, R. M., and Jarett, L. (1995) Electron microscopic visualization of insulin translocation into the cytoplasm and nuclei of intact H35 hepatoma cells using covalently linked Nanogold-insulin.Endocrinology 136, 2825–2835.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, R. M. and Jarett, L. (1990) Partial characterization of mechanism of insulin accumulation in H35 hepatoma cell nuclei.Diabetes 39, 683–689.PubMedCrossRefGoogle Scholar
  27. 27.
    Harada, S., Loten, E. G., Smith, R. M., and Jarett, L. (1992) Nonreceptor mediated nuclear accumulation of insulin in H35 rat hepatoma cells.J. Cell. Physiol. 153, 607–613.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith, R. M., Zhang, S., White, M. F., and Jarett, L. (1996) Role of receotir kinase activity and the NPEY960 motif in insulin-accelerated receptor-mediated insulin internalization.J. Receptor Sig. Transduction Res. 15, 339–355.Google Scholar
  29. 29.
    Backer, J. M., Kahn, C. R., Cahill, D. A., Ulrich, A., and White, M. F. (1990) Receptormediated internalization of insulin requires a 12-amino acid sequence in the juxtamembrane region of the insulin receptor β-subunit.J. Biol. Chem. 265, 16,450–16,454.Google Scholar
  30. 30.
    Hamer, I., Haft, C. R., Paccaud, J. P., Maeder, C., Taylor, S., and Carpentier, J. L. (1997) Dual role of a dileucine motif in insulin receptor endocytosis.J. Biol. Chem. 272, 21,685–21,691.CrossRefGoogle Scholar
  31. 31.
    Smith, R. M., Harada, S., Smith, J. A., Zhang, S., and Jarett, L. (1998) Insulin-induced protein tyrosine phosphorylation cascade and signaling molecules are localized in a caveolinenriched cell membrane domain.Cell. Signalling 10, 355–362.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu, P., Ying, Y., Ko, Y.-G., and Anderson, R. G. W. (1996) Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae.J. Biol. Chem. 271, 10,299–10,303.Google Scholar
  33. 33.
    Anderson, R. G. W. (1993) Caveolae: where incoming and outgoing messengers meet.Proc. Natl. Acad. Sci. USA 90, 10,909–10,913.Google Scholar
  34. 34.
    Mastick, C. C. and Saltiel, A. (1997) Insulinstimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells.J. Biol. Chem. 272, 20,706–20,714.CrossRefGoogle Scholar
  35. 35.
    Clot, J., Janicot, M., Fouque, F., Desbuquois, B., Haumont, P., and Lederer, F. (1990) Characterization of insulin degradation products generated in liver endosomes:in vivo andin vitro studies.Mol. Cell. Endocrinol. 72, 175–185.PubMedCrossRefGoogle Scholar
  36. 36.
    Seabright, P., and Smith, G. (1996) Characterization of endosomal insulin degradation intermediates and their sequence of production.Biochem. J. 320, 947–956.PubMedGoogle Scholar
  37. 37.
    Ebrahim, A., Hamel, F. G., Bennett, R. G., and Duckworth, W. C. (1991) Identification of the metal associated with the insulin degrading enzyme.Biochem. Biophys. Res. Commun. 181, 1398–1405.PubMedCrossRefGoogle Scholar
  38. 38.
    Ding, L., Becker, A. B., Suzuki, A., and Roth, R. A. (1992) Comparison of the enzymatic and biochemical properties of human insulindegrading enzyme andEscherichia coli protease III.J. Biol. Chem. 267, 2414–2420.PubMedGoogle Scholar
  39. 39.
    Harada, S., Smith, R. M., Smith, J. A., and Jarett, L. (1993) Inhibition of insulin-degrading enzyme increases translocation of insulin to the nucleus in H35 rat hepatoma cells: evidence of a cytosolic pathway.Endocrinology 132, 2293–2298.PubMedCrossRefGoogle Scholar
  40. 40.
    Harada, S., Smith, R. M., and Jarett, L. (1994) 1,10-Phenanthroline increases nuclear accumulation of insulin in response to inhibiting insulin degradation but has a biphasic effect on insulin’s ability to increase mRNA levels.DNA Cell Biol. 13, 487–493.PubMedGoogle Scholar
  41. 41.
    Shii, K. and Roth, R. A. (1986) Inhibition of insulin degradation by hepatoma cells after microinjection of monoclonal antibodies to a specific cytosolic protease.Proc. Natl. Acad. Sci. USA 83, 4147–4151.PubMedCrossRefGoogle Scholar
  42. 42.
    Duckworth, W. (1988) Insulin degradation: mechanisms, products, and significance.Endocr. Rev. 9, 319–345.PubMedGoogle Scholar
  43. 43.
    Hari, J., Shii, K., and Roth, R. A. (1987) In vivo association of125I-insulin with a cytosolic insulin-degrading enzyme: detection by covalent cross-linking and immunoprecipitation with a monoclonal antibody.Endocrinology 120, 829–831.PubMedGoogle Scholar
  44. 44.
    Ogawa, W., Shii, K., Yonezawa, K., Baba, S., and Yokono, K. (1992) Affinity purification of insulin-degrading enzyme and its endogenous inhibitor from rat liver.J. Biol. Chem. 267, 1310–1316.PubMedGoogle Scholar
  45. 45.
    Harada, S., Smith, R. M., Smith, J. A., Shah, N., and Jarett, L. (1995) Demonstration of specific insulin binding to cytosolic proteins in H35 hepatoma cells, rat liver and skeletal muscle.Biochem. J. 306, 21–28.PubMedGoogle Scholar
  46. 46.
    Smith, R. M. and Jarett, L. (1993) Electron microscopic immunocytochemical approaches to the localization of ligands, receptors, transducers, and transporters, in:Handbook of Endocrine Research Techniques (de Pablo, F., Scanes, C. G., and Weintraub, B. D., eds.), Academic, San Diego, pp. 227–263.Google Scholar
  47. 47.
    He, J. and Furmanski, P. (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA.Nature 373, 721–724.PubMedCrossRefGoogle Scholar
  48. 48.
    Baeuerle, P. A. (1995) Transcriptional activators: enter a polypeptide messenger.Nature 373, 661–662.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubartelli, A. and Sita, R. (1995) Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations.Trends Cell Biol. 5, 409–412.PubMedCrossRefGoogle Scholar
  50. 50.
    Bevan, A. P., Krook, A., Tikerpae, J., Seabright, P. J., Siddle, K., and Smith, G. D. (1997) Chloroquine extends the lifetime of the activated insulin receptor complex in endosomes.J. Biol. Chem. 272, 26,833–26,840.CrossRefGoogle Scholar
  51. 51.
    Papini, E., Rappuoli, R., Murgia, M., and Montecucco, C. (1993) Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate limiting step of translocation in the cytosol.J. Biol. Chem. 268, 1567–1574.PubMedGoogle Scholar
  52. 52.
    Soler, A. P., Smith, R. M., and Jarett, L. (1992) Insulin stimulates accumulation and efflux of macromolecules in isolated nuclei from H35 hepatoma cells.Diabetes 41, 194–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee, Y-H., Harada, S., Smith, R. M., Friedman, R., and Jarett, L. (1996) Expression of and insulin binding to cellular thyroid hormone binding protein is increased during 3T3-L1 adipocytes differentiation and may relate to insulin degrading activity.Biochem. Biophys. Res. Commun. 222, 839–843.PubMedCrossRefGoogle Scholar
  54. 54.
    Harada, S., Smith, R. M., Hu, D-Q., and Jarett, L. (1996) Dexamethasone inhibits insulin binding to insulin degrading enzyme and cytosolic insulin-binding protein p82.Biochem. Biophys. Res. Commun. 218, 154–158.PubMedCrossRefGoogle Scholar
  55. 55.
    Gehm, B. D. and Rosner, M. R. (1991) Regulation of insulin, epidermal growth factor, and transforming growth factor-α levels by growth factor-degrading enzyme.Endocrinology 128, 1603–1610.PubMedCrossRefGoogle Scholar
  56. 56.
    Garcia, J. V., Stoppelli, M. P., Decker, S. J., and Rosner, M. R. (1989) Evolutionarily conserved enzyme degrades transforming growth factoralpha as well as insulin.J. Cell Biol. 108, 177–182.PubMedCrossRefGoogle Scholar
  57. 57.
    Ali, M. and Plas, C. (1989) Glucocorticoid regulation of chloroquine nonsensitive insulin degradation in cultured fetal rat hepatocytes.J. Biol. Chem. 264, 20,992–20,997.Google Scholar
  58. 58.
    Kupfer, S. R., Wilson, E. M., and French, F. S. (1994) Androgen and glucocorticoid receptors interact with insulin degrading enzyme.J. Biol. Chem. 269, 20,622–20,628.Google Scholar
  59. 59.
    Ashizawa, K. and Cheng, S.-Y. (1992) Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein.Proc. Natl. Acad. Sci. USA 89, 9277–9281.PubMedCrossRefGoogle Scholar
  60. 60.
    Freedman, R. B., Hirst, T. R., and Tuite, M. F. (1994) Protein disulfide isomerase: building bridges in protein folding.TIBS 19, 331–336.PubMedGoogle Scholar
  61. 61.
    Hern, E. P. and Varandani, P. T. (1980) Turnover of hepatic glutathione-insulin transhydrogenase (disulfide interchange enzyme) in normal and diabetic rats utilizing a new simplified isolation procedure.J. Biol. Chem. 255, 697–703.PubMedGoogle Scholar
  62. 62.
    Berezney, R. (1991) Nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus.J. Cell. Biochem. 47, 109–123.PubMedCrossRefGoogle Scholar
  63. 63.
    Miller, D. S. (1988) Stimulation of RNA and protein synthesis by intracellular insulin.Science 240, 506–509.PubMedCrossRefGoogle Scholar
  64. 64.
    Loten, E. G., Smith, J. A., and Jarett, L. (1993) Activation and inhibition of insulin receptor autophosphorylation by trypsin treatment of intact H35 cells.Int. J. Biochem. 5, 653–660.CrossRefGoogle Scholar
  65. 65.
    Lin, Y.J., Harada, S., Loten, E. G., Smith, R. M., and Jarett, L. (1992) Direct stimulation of immediate-early genes by intranuclear insulin in trypsin-treated H35 hepatoma cells.Proc. Natl. Acad. Sci. USA 89, 9691–9694.PubMedCrossRefGoogle Scholar
  66. 66.
    Purrello, F., Vigneri, R., Clawson, G. A., and Goldfine, I. D. (1982) Insulin stimulation of nucleoside triphosphatase activity in isolated nuclear envelopes.Science 216, 1005–1007.PubMedCrossRefGoogle Scholar
  67. 67.
    Schumm, D. E. and Webb, T. E. (1978) Effect of adenosine 3′:5′-monophosphate and guanosine 3′:5′-monophosphate on RNA release from isolated nuclei.J. Biol. Chem. 253, 8513–8519.PubMedGoogle Scholar
  68. 68.
    Schumm, D. E. and Webb, T. E. (1983) Effect of physiological concentrations of insulin and antidiabetic drugs on RNA release from isolated liver nuclei.J. Cell. Biochem. 23, 223–229.PubMedCrossRefGoogle Scholar
  69. 69.
    Goldfine, I. D., Purrello, F., Vigneri, R., and Clawson, G. A. (1985) Insulin and the regulation of isolated nuclei and nuclear subfractions: potential relationship to mRNA metabolism.Diab. Metab. Rev. 1, 119–137.CrossRefGoogle Scholar
  70. 70.
    Schroder, H. C., Wegner, R., Ugarkovic, D., Friese, K., Bachmann, M., and Muller, W. E. G. (1990) Differential effect of insulin and epidermal growth factor on the mRNA translocation system and transport of specific poly(A+) mRNA and poly(A-) mRNA in isolated nuclei.Biochemistry 29, 2368–2378.PubMedCrossRefGoogle Scholar
  71. 71.
    Schindler, M. and Jiang, L-W. (1987) Epidermal growth factor and insulin stimulate nuclear pore-mediated macromolecular transport in isolated rat liver nuclei.J. Cell Biol. 104, 849–853.PubMedCrossRefGoogle Scholar
  72. 72.
    Hamel, F. G., Posner, B. I., Bergeron, J. J. M., Frank, B., and Duckworth, W. C. (1988) Isolation of insulin degradation products from endosomes derived from intact rat liver.J. Biol. Chem. 263, 6703–6708.PubMedGoogle Scholar
  73. 73.
    Yoneda, Y. (1997) How proteins are transported from cytoplasm to the nucleus.J. Biochem. 121, 811–817.PubMedGoogle Scholar
  74. 74.
    Silver, P. A. (1991) How proteins enter the nucleus.Cell 64, 489–497.PubMedCrossRefGoogle Scholar
  75. 75.
    Li, W., Fawcett, J., Widmer, H. R., Fielder, P. J., Rabkin, R., and Keller, G-A. (1997) Nuclear transport of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in opossum kidney cells.Endocrinology 138, 1763–1766.PubMedCrossRefGoogle Scholar
  76. 76.
    Jaques, G., Noll, K., Wegmann, B., Witten, S., Kogan, E., Radulescu, R. T., and Havemann, K. (1997) Nuclear localization of insulin-like growth factor binding protein 3 in a lung cancer cell line.Endocrinology 138, 1767–1770.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc 1999

Authors and Affiliations

  • Shuko Harada
    • 1
  • Robert M. Smith
    • 2
  • Leonard Jarett
    • 2
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphia
  2. 2.Institute of Molecular Medicine and GeneticsMedical College of GeorgiaAugusta

Personalised recommendations