Cell Biochemistry and Biophysics

, Volume 31, Issue 2, pp 175–183 | Cite as

Cryo-electron microscopy of GDP-tubulin rings

  • William V. Nicholson
  • Minou Lee
  • Kenneth H. Downing
  • Eva Nogales


Rings of guanosine diphosphate (GDP)-tubulin formed in the presence of divalent cations have been studied using conventional negative stain and cryo-electron microscopy. The structure of such rings resembles that of depolymerizing microtubule ends and corresponds to an “unconstrained” conformation of tubulin in its GDP state. The use of cryo-techniques has allowed us to image the ring polymers free from dehydration and flattening artifacts. Preparations of frozenhydrated GDP-tubulin rings are generally heterogeneous and contain a mixture of double, triple, and incomplete rings, as well as spirals and some rare single rings. Images of different polymer types can be identified and classified into groups that are then amenable for averaging and single particle reconstruction methods. Identifying the differences in tubulin structure, between straight and curve protofilaments, will be important to understand the molecular bases of dynamic instability in microtubules.

Index Entries

Tubulin microtubules GDP depolymerization cryo-electron microscopy single particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hyams, J. S. and Lloyd, C. W. (1993)Microtubules. Modern Cell Biology (Harford, J. B. ed.). Wiley-Liss, New York.Google Scholar
  2. 2.
    Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth.Nature 312, 237–242.PubMedCrossRefGoogle Scholar
  3. 3.
    Kreis, T. and Vale, R. (1993) Guidebook to the cytoskeleton and motor proteins. Oxford University, New York.Google Scholar
  4. 4.
    Desai, A. and Mitchison, T. J. (1997) Microtubule polymerization dynamics.Ann. Rev. Dev. Biol. 13, 83–117.CrossRefGoogle Scholar
  5. 5.
    Spiegelman, B. M., Penningroth, S. M., and Kirschner, M. W. (1977) Turnover of tubulin and the N-site GTP in chinese hamster ovarian cells.Cell 12, 587–600.PubMedCrossRefGoogle Scholar
  6. 6.
    Nath, J. P. and Himes, R. H. (1986) Localization of the exchangeable nucleotide binding domain in ß-tubulin.Biochm. Biophys. Res. Com. 135, 1135–1143.CrossRefGoogle Scholar
  7. 7.
    Jacobs, M., Smith, H. and Taylor, E. W. (1974) Tubulin: nucleotide binding and enzymatic activity.J. Mol. Biol. 89, 455–468.PubMedCrossRefGoogle Scholar
  8. 8.
    David-Pfeuty, T., Erickson, H. P., and Pantaloni, D. (1977) Guanosine triphosphate activity of tubulin associated with microtubule assembly.Proc. Natl. Acad. Sci. USA 74, 5372–5376.PubMedCrossRefGoogle Scholar
  9. 9.
    Caplow, M., Ruhlen, R. L., and Shanks, J. (1994) The free energy of hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.J. Cell Biol. 127, 779–788.PubMedCrossRefGoogle Scholar
  10. 10.
    Mandelkow, E.-M., Mandelkow, E., and Milligan, R. A. (1991) Microtubules dynamics and microtubules caps: a time-resolved cryo-electron microscopy study.J. Cell Biol. 114, 977–991.PubMedCrossRefGoogle Scholar
  11. 11.
    Melki, R., Carlier, M. F., Pantaloni, D., and Timasheff, S. N. (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies.Biochemistry 28, 9143–9152.PubMedCrossRefGoogle Scholar
  12. 12.
    Mandelkow, E.-M., Lange, G., Jangla, A., Spann, U., and Mandelkow, E. (1988) Dynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions.EMBO J. 7, 357–365.PubMedGoogle Scholar
  13. 13.
    Tran, P. T., Joshi, P., and Salmon, E. D. (1997) How tubulin subunits are lost from the shortening ends of microtubules.J. Struct. Biol. 118, 107–118.PubMedCrossRefGoogle Scholar
  14. 14.
    Howard, W. D. and Timasheff, S. N. (1986) GDP state of tubulin: stabilization of double rings.Biochemistry 25, 8292–8300.PubMedCrossRefGoogle Scholar
  15. 15.
    Voter, W. A. and Erickson, H. P. (1979) Tubulin rings: curved filaments with limited flexibility and two modes of association.J. Supramol. Struc. 10, 419–431.CrossRefGoogle Scholar
  16. 16.
    Díaz, J. F., Pantos, E., Bordas, J., and Andreu, J. M. (1994) Solution structure of GDP-tubulin double rings to 3nm resolution and comparison with microtubules.J. Mol. Biol. 238, 214–225.PubMedCrossRefGoogle Scholar
  17. 17.
    Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y. H., Ladjadj, M. et al. (1996) SPIDER and WEB: Processing and visualization of images in 3D microscopy and related fields.J. Struc. Biol. 116, 190–199.CrossRefGoogle Scholar
  18. 18.
    Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs.J. Struct. Biol. 116, 9–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Lobert, S. and Correia, J. (1992) Subtilisin cleavage of tubulin heterodimers and polymers.Arch. Bioch., Biophys. 296, 152–160.CrossRefGoogle Scholar
  20. 20.
    White, E. A., Burton, P. R., and Himes, R. H. (1987) Polymorphic assembly of subtilisin-cleaved tubulin.Cell Mot. Cytosk. 7, 31–38.CrossRefGoogle Scholar
  21. 21.
    Sackett, D. L., Bhattacharyya, B., and Wolff, J. (1985) Tubulin subunit carboxyl termini determine polymerization efficiency.J. Biol. Chem. 260, 43–45.PubMedGoogle Scholar
  22. 22.
    Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. (1998) High resolution structure of the microtubule.Cell 96, 79–88.CrossRefGoogle Scholar
  23. 23.
    Penczek, P., Radermacher, M., and Frank, J. (1992) Three-dimensional reconstruction of single particles embedded in ice.Ultramicros 40, 33–53.CrossRefGoogle Scholar
  24. 24.
    Hoenger, A., Sablin, E. P., Vale, R. D., Fletterick, R. J., and Milligan, R. A. (1995) Three-dimensional structure of a tubulin-motor-protein complex.Nature 376, 271–274.PubMedCrossRefGoogle Scholar
  25. 25.
    Wolf, S. G., Mosser, G., and Downing, K. H. (1993) Tubulin conformation in zinc-induced sheets and macrotubes.J. Struc. Biol. 111, 190–199.CrossRefGoogle Scholar
  26. 26.
    Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the ab tubulin dimer by electron crystallography.Nature 391, 199–203.PubMedCrossRefGoogle Scholar
  27. 27.
    Nogales, E., Downing, K. H., Amos, L. A., and Löwe, J. (1998) Tubulin and FtsZ form a distinct family of GTPases.Nature Struc. Biol. 5, 451–458.CrossRefGoogle Scholar
  28. 28.
    Lobert, S. and Correia, J. J. (1991) Studies of crystallization conditions for native and subtilisin-cleaved pig brain tubulin.Arch. Biochem. Bioph. 290, 93–102.CrossRefGoogle Scholar
  29. 29.
    Downing, K. H. and Nogales, E. (1998) Tubulin and microtubule structure.Curr. Opin. Cell Biol. 10, 16–22.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc 1999

Authors and Affiliations

  • William V. Nicholson
    • 1
    • 2
  • Minou Lee
    • 3
  • Kenneth H. Downing
    • 1
  • Eva Nogales
    • 1
    • 2
  1. 1.Life Sciences Division, Lawrence Berkeley Natl. Lab.UC Berkeley, LSA, 355Berkeley
  2. 2.Molecular and Cell Biology DepartmentUC Berkeley, LSA, 355Berkeley
  3. 3.Department of NeurobiologyHarvard Medical SchoolBoston

Personalised recommendations